
Working with Data in Stata

Micole De Vera
CEMFI

Undergraduate Summer Internship Program
June 2021

What is Stata?

Statistical software that is popular among economists.

Alternatives: Eviews, SPSS, Gretl, SAS, Python, Matlab, R, Julia,
Fortran, C++

1 / 47

Why Stata?
Advantages

I Focuses on working with “variables” and “observations”
which makes data manipulation more intuitive and easy

I Computationally efficient codes are available for standard
estimation routines

I Good standard graphics package

I Relatively fast even with large data sets

I Network effects: more people using it means more people who
can help you

Disadvantages

I Not a free software (but most universities provide student
licenses)

I Limits workspace to one data set at a time (not in recent
updates)

I Non-standard estimation routines may be tedious

2 / 47

This Short Course?

I Introduction to the syntax of Stata and commonly used
commands

I Applicable to Stata version 14

I Not meant to be exhaustive with a focus on breadth not depth
I We will do hands-on work with a data set to illustrate these

commands
I (If I did it correctly) The fake data set should mimic one used

to study wages
I We will try to make statistics and graphs relating to the

gender wage gap
I The analysis we will do will be overly simplified on false data

→ Let’s not take the results too seriously

3 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

How do we interact with Stata?

1. Menus and dialog boxes
I Click menu options in the top of window
I You can input details and select options in a pop-up dialog box

2. Command-line interface
I One can execute commands line by line in the command

window
I Series of executed commands are saved in a “Review” pane
I Useful for quickly checking how things work

3. Do-files
I Type up list of commands which can be executed as a batch
I Allows for systematic replication of the steps you executed to

get the output

4 / 47

Basic Stata Syntax
Stata commands have the following form:

[pre:] cmd [vars] [if] [using] [=exp] [weight] [, options]

where the brackets are optional command components

I [vars] is the list of input variables to the command

I [if] is a condition on observations that enters the command

I [using] specifies the file that the command will use

I [=exp] is used when we want to create new variables

I [weight] is used when we want to use sample weights

I [, options] is used to indicate options chosen for command

If you want to know how a command works or which options are
associated with a command:

help cmd

5 / 47

Keeping track of the output: .log files

I log files allow you to save your results to refer later on

I Especially useful when replication is time-consuming

I To begin a log file:

log using file.smcl, replace

This records output in Stata Markup and Control Language
(SMCL)

I To close the log file: log close

I SMCL is a native file format, to access it elsewhere:
I For notepad: translate file.smcl file.log
I PDF (Windows or Mac): translate file.smcl file.pdf

I You can also skip the SMCL step:

log using file.log, replace

I In case you want to continue from a previous file, you can use
the option append instead of replace

6 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Loading in Data

use filename [, clear]

use [varlist] [if] using filename [, clear]

I The native Stata dataset format is .dta

I You can put just the filename if your data is in the same
folder as your do-file: use dataset.dta, clear

I If not, put the filepath (absolute or relative):
use "C:/MyData/dataset.dta", clear

use MyData/dataset.dta, clear

I How about non-dta files? (e.g. csv files)

import delimited file [, options]

import delimited [varlist] using file [, options]

Also, check import excel and the older command insheet.

7 / 47

Saving Data

save [filename] [, options]

I Saves the file in the working directory unless specified

I Important option: replace

→ You cannot save two files with the same name in the same
folder. This will overwrite the older file.

I Related commands:
I sort vars [, stable] or gsort [+/-] vars [, optns]

→ This sorts the observations in increasing order based on
varlist. The option stable is important when you might have
observations with equal values of varlist.

I export delimited and export excel

8 / 47

Detour: Working Directory and Paths

I You set the current working directory using

cd "directory"

To check what the current directory is: pwd

I Both “\” (Windows) and “/” (Mac/Linux) work (with some
caveats)

cd "C:\Users\mvdeve30\project"
cd "/Users/mvdeve30/project"

I Relative paths: You can navigate the folders relative to the
working directory

use data/file.dta, clear

save output/newsave.dta, replace

9 / 47

Viewing the Data

I With well-documented data, describe gives you a good idea
of the data you are working with

I If you want to look at specific observations, browse might be
helpful:

browse [varlist] [if] [, nolabel]

I You might want to check what your code is doing on special
cases

I The option nolabel helps you look at the data without value
labels

I Related command: list

10 / 47

Data Types in Stata

I Each data is of two types: numeric or string
I Type numeric: byte, int, long, float, double
I Type string: str1,..., str2045, strL

I When browsing the data, numeric variables will be in black,
strings in red, and variables with value labels will be in blue
(unless otherwise specified)

I Values in type string are placed in "string"

I Working with string variables: destring, tostring

I compress is used to reduce the amount of memory used by
the data by changing the data type of the variables

11 / 47

Data Reporting: summarize and count

summarize [varlist] [if] [weight] [, options]

I Gives a variety of univariate summary statistics (e.g. number
of observations, mean, standard deviation, min, max)

I If varlist not specified, it will report summary statistics of all
variables

I Important option: detail (e.g. percentiles, skewness,...)

count [if]

I Counts the number of observations that satisfy the specified
conditions

I Without conditions, count gives the number of observations

12 / 47

Data Reporting: tabulate

tabulate varname [if] [weight] [, options]

tabulate varname1 varname2 [if] [weight] [, options]

I Gives frequency tables for categorical variables (variables that
identify groups)

I You might be interested in looking at the means of a variable
by categories. For example,

tabulate sex, summarize(wage)

tabulate sex education, summarize(wage)

I Related command:

tabstat vars [if] [, by(var) stat(list) ...]

Possible statistics: mean, sd, min, max,...

I Useful option: gen to generate dummies of the categorical var

13 / 47

Other Possibly Useful Statistics

I Correlations:

correlate [varlist] [if] [weight] [, options]

pwcorr [varlist] [if] [weight] [, options]

I correlate only uses the subsample where all the observations
in varlist is not missing. pwcorr computes correlations
pairwise.

I Important pwcorr option: obs – to display the number of
observations used to compute the pairwise correlation

I Other option: covariance to get variance-covariance matrix

I Test of mean: t-test

One-sample: ttest var == # [if] [, level(#)]

Group means: ttest var [if], by(group) [options]

Variables: ttest var1 == var2 [if] [, unpaired]

→ Important option: unequal to take account of unequal
variances in testing group means or in unpaired t-test

14 / 47

Accessing Results

I After summarize, tabulate, etc., Stata saves some of the
statistics which you can use later on

I To see which results are stored and how to access them:

return list

I This is potentially useful with summarize and detail option

I For example:

sum age, detail

display r(skewness)

15 / 47

drop and keep

drop varlist drop if exp

keep varlist keep if exp

I These commands allow you to drop/keep variables or
observations

I When dealing with large data sets, it is a good idea to drop
variables you do not need

I Related commands: preserve and restore
I This allows you to preserve the data at some point in time, do

further manipulations, then restore the data back
I This might be useful when you want to make separate

subsamples. But you can also do this with if or by
statements.

16 / 47

Appending Data

append using filename [, options]

I This is if you wanted to add more observations to your
dataset – that is, combine two Stata-format datasets

I Related command: erase filename

17 / 47

Merging Data

merge 1:1 varlist using filename [, options]

merge m:1 varlist using filename [, options]

merge 1:m varlist using filename [, options]

I Data in memory is master while data on disk is using
I merge is created after merging:

Code Word Description

1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

I Be careful merging datasets with variables that share names
as values will be overwritten unless otherwise specified

18 / 47

Summarizing Data using collapse

collapse [(stat) varlist] [if] [weight] [, options]

collapse [(stat) new = var] [if] [weight] [, options]

I collapse converts the dataset in memory into a dataset of
means, sums, medians, etc.

I Possibilities for stat: mean, sd, median, sum, p25,...
I This may be useful for:

I Computing summary statistics for different groups of
observations

I Creating datasets at higher levels of aggregation (for example,
from student level to school level)

I Important option: by(varlist) groups over which the
statistics are calculated

19 / 47

Reshaping Data

reshape wide stub, i(varlist) j(existvar) [options]

reshape long stub, i(varlist) j(newvar) [options]

I i() indicates the ID variables – top-level grouping

I j() indicates the subgrouping (e.g. year)

I In wide → long, the ID var needs to be unique

I In long → wide, the j() needs to be unique within each i

20 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Arithmetic, Relational and Logical Operations

Arithmetic operators:
+ (addition), - (subtraction), * (multiplication), / (division), ∧
(exponentiation)

Relational operators:

Name Operator Example

Equality == 5 == 5

Inequality != 2 != 5

Less than < 2 < 5

Less than or equal <= 4 <= 4

Greater than or equal >= 8 >= 7

Greater than > 10 > 7

Logical operators:

Name Operator Example

Negation (NOT) ! !(3 == 5) = T

AND & T & T = T

OR | T | F = T

21 / 47

Generating Variables: generate, egen and replace

generate newvar = exp [if]

I gen creates a new variable whose value is given by = exp

I For simple transformations (see help functions)

egen newvar = fcn(args) [if] [, options]

I Extension to gen (mean, max, min, group, rowtotal, etc.)

I Check help egen to see what you can do

replace oldvar = exp [if] [, nopromote]

I replace changes the contents of existing variables

I The option nopromote prevents variable type changes

22 / 47

Variable Naming Conventions

There are some rules to naming variables (and other objects) in
Stata:

I A name can only contain letters (A-Z and a-z), digits (0-9),
and the underscore ()

I Variable names can contain up to 32 characters (tradeoff
between descriptiveness and conciseness)

I There are reserved names that cannot be used as variable
names: all, double, if, int, long, ...

I Names should start with only a letter or underscore (though I
do not recommend starting with an underscore because Stata
built-in variables usually start with one)

I Names are case-sensitive – that is, var, Var, VAR are all
distinct variable names

23 / 47

A Note on Missing Values

I BE CAREFUL WITH MISSING VALUES

I Stata treats the missing value (.) as a very large number
(positive infinity)

var (var > 1)

0 0

5 1

. 1

I How to deal with them?
I missing() returns 1 if the argument is missing and 0

otherwise
I Best: gen above5 = (var > 5) if !missing(var)
I Acceptable: gen above5 = (var > 5) if var != .
I Better: gen above5 = (var > 5) if var < .

I It happens that Stata has multiple missing values!

non-missing numbers < . < .a < ... < .z

24 / 47

Variable Label and Label Values

I Short description of data:

label data "label"

I To add more description of a specific variable:

label variable varname "label"

I Define a value label:

label define lblname # "lbl" [# "lbl" ...]

Options: add, modify, replace

I Assign a label to a variable:

label values varlist lblname

25 / 47

Some Shortcuts: List of Variables

I The dash (-) can be used for variables with the same prefix
and end in numbers. For example, writing v1-v4 is the same
as writing v1 v2 v3 v4

I Not so recommended (because you have to know the order of
variables very well): If variables in your dataset are ordered a,
b, c, d then typing a-d will call all variables

I The asterisk (*) indicates that zero or more characters can
take its position. For instance, writing v* will call on all
variables that starts with v: v1, v234, velocity, ...

I You can use ? to indicate that one character appears in its
place
I v? will call v1, ..., v9
I v?? will call v10, ..., v99

26 / 47

The Power of by or bysort

I The by construct is very helpful:

by vars1 (vars2): command

It does the following:

1. First, it verifies if the data is sorted by vars1 and vars2.
2. If it is sorted, then it performs command by vars1.

I This only works if the data is sorted ⇒ bysort

I Combination with gen or egen: this is very useful in creating
variables which vary over groups (for example, a group mean)

bysort var1: egen meanvar2 = mean(var2)

27 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Working with n and N

I n gives the observation number

I N gives the number of observations
I Useful when combined with by concept. You can label

observation numbers or total number of observations within
each group
I Check for duplicates

by id: gen totobs = N

list if totobs > 1

I Check latest observation

gsort id -year

by id: gen obsno = n

br if obsno == 1

I Many more...

I You can also use it for subscripting: gen lag = var[n - 1]

28 / 47

Local and Global Macros

global name [= exp | "[string]"]

local name [= exp | "[string]"]

I Global macros, once defined, can be used anywhere in Stata.
Local macros exist solely in the program or do-file where they
are defined.

I Contents of a global macro are called with $macroname while
local macros are called with ‘macroname’

I Some uses:
I Define paths (as an alternative to relative paths):

global data "C:/Users/mvdeve30/Dropbox"

use "$data/dataset.dta", clear

I Repeated controls:

local controls var1 var2 var3

reg depvar ‘controls’

29 / 47

If-Then Statements

if exp1 {
Stata commands

}
else if exp2 {

Stata commands
}
else exp3 {

Stata commands
}
I Related command: cond(exp, a, b) which returns a if exp

is true and b otherwise

30 / 47

For Loops: foreach and forvalues

forvalues lname = range {
Stata commands

}
The range can be specified in multiple ways:

I #1 (#d) #2 – from #1 to #2 in steps of #d

I #1/#2 – from #1 to #2 in steps of 1

foreach lname in/of [listtype] list {
Stata commands

}
I When you use in you do not need to specify listtype

I Possible listtypes: local, global, varlist, numlist

31 / 47

While Loops

while exp {
Stata commands

}
I Be careful not to define an infinite loop

I Useful when combined with macros. For example,
local iter = 1

while iter <= 10 {
display ‘iter’

local iter = ‘iter’ + 1

}
I Updating can be made easier: local ++iter

32 / 47

Some tools for large data sets: reghdfe and gtools

I Commands which are based on bysort are slow ⇒ gtools

I Alternative: ftools (Mata implementation)

I In order to estimate models with a lot of fixed effects:
reghdfe (linear regression) and ppmlhdfe (Poisson model)

33 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Linear Regression

I Often, we are interested in estimating models like:

y = β0 + β1x1 + β2x2 + ...+ ε

I We are interested in obtaining estimates of the coefficients
(i.e. β̂) and some quantification of the uncertainty on the
estimates (i.e. standard errors)

I We usually obtain β̂ from minimizing a least squares criterion
I How we compute standard errors depends on what we assume

about the underlying structure (or economics) of the data
I Variability in the error component might vary over

subpopulations (heteroskedasticity)
I There might be correlated shocks within groups of

observations (clustered data)

34 / 47

Linear Regression in Stata

regress depvar [indepvars] [if] [weight] [, options]

I You can use the if to restrict the sample (no need to make
separate data files for each subpopulation)

I Important options for computing standard errors:
I For heteroskedasticity-robust standard errors:

reg y x, vce(robust)

I For cluster-robust standard errors:

reg y x, vce(cluster clustvar)

35 / 47

Factor Variables

I Factor (categorical) variables are variables that identifies
groupings. Examples: location, industry, education group,...

I Indicator variables are a special case of categorical variables
with binary values. Examples: sex, immigrant status,...

I In regressions, you add a i. in front of a variable to declare it
as a factor variable: reg y i.group

I On the other hand, c. is used to declare variables as
continuous

I Interactions? Use # operator
I Two factor vars? reg y i.sex i.group i.sex#i.group
I Shortcut: reg y i.sex##i.group
I Interactions involving continuous variables?

reg y i.sex age i.sex#c.age

reg y i.sex##c.age
I You can declare the omitted category using ibX.var where X

is the number of the category to be omitted

36 / 47

Panel Data

I You might be interested in estimating a fixed effects or
random effects model using panel data

I Define data as a panel: xtset cs var time var

I Observations must be unique by (cs var, time var)

I Panel regression:

xtreg depvar [indepvar] [if] [, options]

I Default is a random effects model. Options: re, fe

I Standard error options: vce()

With panel data, you can use time series operators

I Lags: L.var, L2.var, ...

I Leads: F.var, F2.var, ...

I Difference: D.var

I Seasonal difference: ..., S12.var, ...

37 / 47

Accessing Results

I The objects that are stored after estimation can be identified
using

ereturn list

I Stata gives us an easy way to access coefficient estimates and
standard errors:

b[varname]

se[varname]

I You can also predict the dependent variable based on the
estimated model

predict newvarname [, xb]

or get the residuals from the regression

predict newvarname, residuals

38 / 47

Detour: Installing User-Written Packages

I ssc install pkgname [, replace]
I This downloads packages and files from Statistical Software

Components (SSC) archive
I Popular: outreg2, ivreg2, oaxaca, reghdfe

I net install pkgname [, replace force from(url)]
I Downloads and installs ado files to Stata from internet or

physical media
I Might be useful: usespss – This is not too useful if you have

Stata version 16 or higher.

39 / 47

Saving Results: outreg2

I Install: ssc install outreg2

I Simple way to export regression results in a format which is
easier to incorporate into a paper: Word, Excel, TEX

I Structure:

outreg2 using filename [, options]

I Saving options: replace, append

I Output options: word, excel, tex

I Titles, notes and variables: ctitle(), addnote() (used in
the first outreg2 call), drop(), keep(), addtext()

I Example:
reg price weight

outreg2 using file, replace ctitle(Reg1)

reg price weight length

outreg2 using file, append ctitle(Reg2)

I Related commands: putexcel, estout, esttab

40 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Helpful link

https://www.stata.com/support/faqs/graphics/gph/stata-graphs/

41 / 47

https://www.stata.com/support/faqs/graphics/gph/stata-graphs/

Histograms and Kernel Densities

I histogram var [if] [, cont ops|disc ops options]
I Some options: discrete, bin(#), normal, kdensity

I kdensity var [if] [, options]
I Some options: kernel(), bwidth(#), n(#), normal
I Some kernel options: epanechnikov (default), gaussian,

triangle

42 / 47

Twoway Plots

[graph] twoway plot [if] [, twoway opts]

plot: (type vars [if] [, opts]) ...

I First variable will be the vertical axis and the second will be
the horizontal axis

I Types: scatter, line, lfit, lfitci, ...

I You can also use || to separate plots instead of ()

I For example: scatter + lfit

43 / 47

Graph Options

I Title options: title("text"), subtitle("text"),
note("text")

I Axis options: xtitle("text")/ytitle("text"),
xlabel(range)/ylabel(range)

I Legend options: legend(subopts)
Important suboption: label(# "name")

I Background option: graphregion(color(white))

I Multiple graphs: by(var)

* When you use line, make sure that your data is sorted in the x
variable

44 / 47

Saving Figures

graph save [graphname] filename [, replace]

I Saves the graph to disk with default .gph format

I Related command: graph use filename

I You can combine graphs (see graph combine)

graph export filename.suffix [, options]

I Important options:
I name() – name of graph window to export
I as – file format if suffix not specified
I replace

I It is best if you export your graphs in vector-format – this is
so you don’t get blurry images if you make the image larger
⇒ .eps or .pdf

45 / 47

Outline

Keeping Track of Work: do-files and log-files

Data Management and Description

Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results

Graphics

Good Practices for Coding

Dos and Don’ts (not definitive)

I Use descriptive names for variables and functions.
Complement with comments. Be consistent.

I Try to use relative paths (or macros) to point to files that you
are using. This helps when someone else is running the code
in a different computer.

I Try to make directories (separate folders which serve different
functions):
I Separate inputs from outputs
I Separate raw files from intermediate files (Never overwrite your

raw data)

I If possible, run your code in small chunks to check for errors.
Also, try to write in tests to see if you are still on the right
track.

46 / 47

Simple Tips for Big Data

I Compress your data to use variable types appropriate to its
content

I Avoid strings if you can (use value labels instead)
I Take advantage of Stata’s factor variables features.

I Use one variable instead of multiple indicator variables
I Do not store squared variables, interactions, or lagged values

I Try to use optimized commands, if possible

I gsort is useful but not very efficient. You may want to create
a negative variable and use sort instead

I Drop variables which you will not use

47 / 47

	Keeping Track of Work: do-files and log-files
	Data Management and Description
	Operations with Data
	Other Tools
	Macros: Working with Locals and Globals
	Conditionals and Loops
	Working with Big Data Sets

	Linear Regression: Estimation and Reporting Results
	Graphics
	Good Practices for Coding

