Working with Data in Stata

Micole De Vera
CEMFI

Undergraduate Summer Internship Program
June 2021

What is Stata?
Statistical software that is popular among economists.

D stota/Mp 142
Viindow Help

Fle Edt Data Graphics

- |- HBEe0
T

Statitics User

GHdS d=

_/ v a
Statistics/bata Analysis

¥ - Parallel Edition

EES

CA\Users\mvdeve30\Documents

Alternatives: Eviews, SPSS, Gretl, SAS, Python, Matlab, R, Julia,

1/47

Fortran, C+-+

Why Stata?

Advantages

>

>

v

Focuses on working with “variables” and “observations”
which makes data manipulation more intuitive and easy

Computationally efficient codes are available for standard
estimation routines

Good standard graphics package
Relatively fast even with large data sets

Network effects: more people using it means more people who
can help you

Disadvantages

| 2

>

Not a free software (but most universities provide student
licenses)

Limits workspace to one data set at a time (not in recent
updates)

Non-standard estimation routines may be tedious

2/47

This Short Course?

» Introduction to the syntax of Stata and commonly used
commands

» Applicable to Stata version 14

> Not meant to be exhaustive with a focus on breadth not depth

> We will do hands-on work with a data set to illustrate these
commands

> (If I did it correctly) The fake data set should mimic one used
to study wages

» We will try to make statistics and graphs relating to the
gender wage gap

» The analysis we will do will be overly simplified on false data
— Let's not take the results too seriously

3/47

Outline

Keeping Track of Work: do-files and log-files
Data Management and Description
Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results
Graphics

Good Practices for Coding

Outline

Keeping Track of Work: do-files and log-files

How do we interact with Stata?

1. Menus and dialog boxes

» Click menu options in the top of window
» You can input details and select options in a pop-up dialog box
2. Command-line interface
» One can execute commands line by line in the command
window

» Series of executed commands are saved in a “Review" pane
» Useful for quickly checking how things work

3. Do-files
» Type up list of commands which can be executed as a batch

» Allows for systematic replication of the steps you executed to
get the output

4/47

Basic Stata Syntax

Stata commands have the following form:

[pre:] cmd [vars] [if] [using] [=exp] [weight] [, options]

where the brackets are optional command components

>

VVvyVvYyVvyy

[vars] is the list of input variables to the command

[if] is a condition on observations that enters the command
[using] specifies the file that the command will use

[=exp] is used when we want to create new variables
[weight] is used when we want to use sample weights

[, options] is used to indicate options chosen for command

If you want to know how a command works or which options are
associated with a command:

help cmd

5/47

Keeping track of the output: .log files

v

log files allow you to save your results to refer later on
Especially useful when replication is time-consuming
To begin a log file:

log using file.smcl, replace

This records output in Stata Markup and Control Language
(SMCL)

To close the log file: log close

SMCL is a native file format, to access it elsewhere:

» For notepad: translate file.smcl file.log
»> PDF (Windows or Mac): translate file.smcl file.pdf

You can also skip the SMCL step:
log using file.log, replace

In case you want to continue from a previous file, you can use
the option append instead of replace

6/47

Outline

Data Management and Description

Loading in Data

use filename [, clear]
use [varlist] [if] using filename [, clear]

» The native Stata dataset format is .dta

» You can put just the filename if your data is in the same
folder as your do-file: use dataset.dta, clear

» If not, put the filepath (absolute or relative):
use "C:/MyData/dataset.dta", clear
use MyData/dataset.dta, clear

» How about non-dta files? (e.g. csv files)

import delimited file [, options]
import delimited [varlist] using file [, options]

Also, check import excel and the older command insheet.

7/47

Saving Data

save [filename] [, options]

» Saves the file in the working directory unless specified

P> Important option: replace
— You cannot save two files with the same name in the same
folder. This will overwrite the older file.

» Related commands:

> sort vars [, stable] or gsort [+/-] vars [, optns]
— This sorts the observations in increasing order based on
varlist. The option stable is important when you might have
observations with equal values of varlist.

P> export delimited and export excel

8/47

Detour: Working Directory and Paths

» You set the current working directory using
cd "directory"
To check what the current directory is: pwd

» Both “\" (Windows) and “/" (Mac/Linux) work (with some
caveats)

cd "C:\Users\mvdeve30\project"
cd "/Users/mvdeve30/project"
P> Relative paths: You can navigate the folders relative to the
working directory
use data/file.dta, clear
save output/newsave.dta, replace

9/47

Viewing the Data

» With well-documented data, describe gives you a good idea
of the data you are working with

» If you want to look at specific observations, browse might be
helpful:

browse [varlist] [if] [, nolabel]

» You might want to check what your code is doing on special
cases

» The option nolabel helps you look at the data without value
labels

» Related command: list

10/47

Data Types in Stata

v

Each data is of two types: numeric or string

» Type numeric: byte, int, long, float, double
» Type string: stri,..., str2045, strL

When browsing the data, numeric variables will be in black,
strings in red, and variables with value labels will be in blue
(unless otherwise specified)

Values in type string are placed in "string"
Working with string variables: destring, tostring

compress is used to reduce the amount of memory used by
the data by changing the data type of the variables

11/47

Data Reporting: summarize and count

summarize [varlist] [if] [weight] [, options]

» Gives a variety of univariate summary statistics (e.g. number
of observations, mean, standard deviation, min, max)

» If varlist not specified, it will report summary statistics of all
variables

» Important option: detail (e.g. percentiles, skewness,...)

count [if]

» Counts the number of observations that satisfy the specified
conditions

» Without conditions, count gives the number of observations

12/47

Data Reporting: tabulate

tabulate varname [if] [weight] [, options]
tabulate varnamel varname2 [if] [weight] [, options]

> Gives frequency tables for categorical variables (variables that
identify groups)

» You might be interested in looking at the means of a variable
by categories. For example,

tabulate sex, summarize(wage)
tabulate sex education, summarize(wage)

» Related command:
tabstat wars [if] [, by(var) stat(list) ...]
Possible statistics: mean, sd, min, max,...

» Useful option: gen to generate dummies of the categorical var

13/47

Other Possibly Useful Statistics

» Correlations:

correlate [varlist] [if] [weight] [, options]
pwcorr [varlist] [if] [weight] [, options]

» correlate only uses the subsample where all the observations
in varlist is not missing. pwcorr computes correlations
pairwise.

» Important pwcorr option: obs — to display the number of
observations used to compute the pairwise correlation

» Other option: covariance to get variance-covariance matrix

» Test of mean: t-test

One-sample: ttest var == # [if] [, level(#)]
Group means: ttest var [if], by(group) [options]
Variables: ttest varl == var2 [if] [, unpaired]

— Important option: unequal to take account of unequal
variances in testing group means or in unpaired t-test

14 /47

Accessing Results

> After summarize, tabulate, etc., Stata saves some of the
statistics which you can use later on

P> To see which results are stored and how to access them:
return list

» This is potentially useful with summarize and detail option

» For example:

sum age, detail
display r(skewness)

15/47

drop and keep

drop varlist drop if exp
keep varlist keep if exp

» These commands allow you to drop/keep variables or
observations

> When dealing with large data sets, it is a good idea to drop
variables you do not need
> Related commands: preserve and restore
» This allows you to preserve the data at some point in time, do
further manipulations, then restore the data back
» This might be useful when you want to make separate
subsamples. But you can also do this with if or by
statements.

16 /47

Appending Data

append using filename [, options]

» This is if you wanted to add more observations to your
dataset — that is, combine two Stata-format datasets

» Related command: erase filename

17/47

Merging Data

merge 1:1 varlist using filename [, options]
merge m:1 varlist using filename [, options]
merge 1:m varlist using filename [, options]

» Data in memory is master while data on disk is using
> _merge is created after merging:

Code Word Description

1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both

» Be careful merging datasets with variables that share names

as values will be overwritten unless otherwise specified
18 /47

Summarizing Data using collapse

collapse [(stat) varlist] [if] [weight] [, options]
collapse [(stat) new = var] [if] [weight] [, options]

» collapse converts the dataset in memory into a dataset of
means, sums, medians, etc.

» Possibilities for stat: mean, sd, median, sum, p25,...

» This may be useful for:

» Computing summary statistics for different groups of
observations

» Creating datasets at higher levels of aggregation (for example,
from student level to school level)

» Important option: by(varlist) groups over which the
statistics are calculated

19/47

Reshaping Data

long wide
i j stub i stubt stub2
1 1 4.1 reshape 1 41 4.5
1 2 45 — 2 33 3.0
2 1 33
2 2 30

reshape wide stub, i(varlist) j(existvar) [options]
reshape long stub, i(varlist) j(newvar) [options]

» i() indicates the ID variables — top-level grouping

» j() indicates the subgrouping (e.g. year)

» In wide — long, the ID var needs to be unique

» In long — wide, the j() needs to be unique within each i

20/47

Outline

Operations with Data

Arithmetic, Relational and Logical Operations

Arithmetic operators:
+ (addition), - (subtraction), * (multiplication), / (division), A
(exponentiation)

Relational operators:
Logical operators:

Name Operator Example

Equality == 5==5 Name Operator Example

| lit I= 2 !=5

L”eq“ti'r{ B y<s Negation (NOT) | 13==5) =T
Less ha | N - AND & T&T=T
ess than or equa <= 4 <=4 OR | T|F=T
Greater than or equal = 8 >=7

Greater than > 10 > 7

21/47

Generating Variables: generate, egen and replace
generate newvar = exp [if]

P> gen creates a new variable whose value is given by = ezp

» For simple transformations (see help functions)

egen newvar = fcn(args) [if] [, options]

» Extension to gen (mean, max, min, group, rowtotal, etc.)

» Check help egen to see what you can do

replace oldvar = ezp [if] [, nopromote]

> replace changes the contents of existing variables
» The option nopromote prevents variable type changes

22/47

Variable Naming Conventions

There are some rules to naming variables (and other objects) in
Stata:

>

>

A name can only contain letters (A-Z and a-z), digits (0-9),
and the underscore ()

Variable names can contain up to 32 characters (tradeoff
between descriptiveness and conciseness)

There are reserved names that cannot be used as variable
names: _all, double, if, int, long, ...

Names should start with only a letter or underscore (though |
do not recommend starting with an underscore because Stata
built-in variables usually start with one)

Names are case-sensitive — that is, var, Var, VAR are all
distinct variable names

23/47

A Note on Missing Values
» BE CAREFUL WITH MISSING VALUES

> Stata treats the missing value (.) as a very large number
(positive infinity)

var (var > 1)

0 0
5 1

» How to deal with them?

» missing() returns 1 if the argument is missing and 0
otherwise

» Best: gen aboveb = (var > 5) if !missing(var)

» Acceptable: gen aboveb = (var > 5) if var != .

> Better: gen abovebs = (var > 5) if var < .

» |t happens that Stata has multiple missing values!
non-missing numbers < . < .a < ... < .z

24 /47

Variable Label and Label Values

» Short description of data:
label data "label"
» To add more description of a specific variable:
label variable varname "label"
» Define a value label:
label define lblname # "1bl" [# "1bl" ...]
Options: add, modify, replace
P Assign a label to a variable:

label values varlist lblname

25 /47

Some Shortcuts: List of Variables

» The dash (-) can be used for variables with the same prefix
and end in numbers. For example, writing v1-v4 is the same
as writing vl v2 v3 v4

» Not so recommended (because you have to know the order of
variables very well): If variables in your dataset are ordered a,
b, ¢, d then typing a-d will call all variables

» The asterisk (*) indicates that zero or more characters can
take its position. For instance, writing v* will call on all
variables that starts with v: v1, v234, velocity, ...

» You can use 7 to indicate that one character appears in its

place
» v? will call v1, ..., v9
» v?7 will call v10, ..., v99

26 /47

The Power of by or bysort

» The by construct is very helpful:

by varsl (vars2): command
It does the following:

1. First, it verifies if the data is sorted by varsl and vars2.
2. If it is sorted, then it performs command by varsi.

» This only works if the data is sorted = bysort

» Combination with gen or egen: this is very useful in creating
variables which vary over groups (for example, a group mean)

bysort varl: egen meanvar2 = mean(var2)

27 /47

Outline

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Working with n and _N

P> _n gives the observation number

> _N gives the number of observations

» Useful when combined with by concept. You can label
observation numbers or total number of observations within
each group

» Check for duplicates
by id: gen totobs = _N
list if totobs > 1
» Check latest observation
gsort id -year
by id: gen obsno = n
br if obsno ==
» Many more...

» You can also use it for subscripting: gen lag = var[mn - 1]

28 /47

Local and Global Macros

global name [= exp | "[string]"]
local name [= exp | "[stringl"]

» Global macros, once defined, can be used anywhere in Stata.
Local macros exist solely in the program or do-file where they
are defined.

» Contents of a global macro are called with $macroname while
local macros are called with ‘macroname’

» Some uses:

» Define paths (as an alternative to relative paths):

global data "C:/Users/mvdeve30/Dropbox"
use "$data/dataset.dta", clear

» Repeated controls:

local controls varl var2 var3
reg depvar ‘controls’

29/47

If-Then Statements

if exp1 {
Stata commands
}

else if exp2 {
Stata commands
}

else ezp3 {
Stata commands
}

» Related command: cond(ezp, a, b) which returns a if ezp
is true and b otherwise

30/47

For Loops: foreach and forvalues

forvalues lname = range {
Stata commands

The range can be specified in multiple ways:

> #1 (#d) #2 — from #1 to #2 in steps of #d
> #1/#2 — from #1 to #2 in steps of 1

foreach lname in/of [listtype] list {
Stata commands
}

» When you use in you do not need to specify listtype
P Possible listtypes: local, global, varlist, numlist

31/47

While Loops

while ezp {
Stata commands
}

» Be careful not to define an infinite loop

» Useful when combined with macros. For example,
local iter =1
while iter <= 10 {
display ‘iter’
local iter = ‘iter’ + 1

}

» Updating can be made easier: local ++iter

32/47

Some tools for large data sets: reghdfe and gtools

» Commands which are based on bysort are slow = gtools

Stata vs gtools
Time (seconds) with 104 obs and 1,000 groups

collapse B ctools
stata

(sd,

reshape ons [y

egenly

» Alternative: ftools (Mata implementation)

» In order to estimate models with a lot of fixed effects:
reghdfe (linear regression) and ppmlhdfe (Poisson model)

33/47

Outline

Linear Regression: Estimation and Reporting Results

Linear Regression

» Often, we are interested in estimating models like:

y = Po+ fix1 + Poxo + ... + €

> We are interested in obtaining estimates of the coefficients
(i.e. B) and some quantification of the uncertainty on the
estimates (i.e. standard errors)

» We usually obtain B from minimizing a least squares criterion
» How we compute standard errors depends on what we assume
about the underlying structure (or economics) of the data
» Variability in the error component might vary over

subpopulations (heteroskedasticity)
» There might be correlated shocks within groups of
observations (clustered data)

34 /47

Linear Regression in Stata

regress depvar [indepvars] [if] [weight] [, options]

» You can use the if to restrict the sample (no need to make
separate data files for each subpopulation)
» Important options for computing standard errors:
» For heteroskedasticity-robust standard errors:
reg y x, vce(robust)
» For cluster-robust standard errors:
reg y x, vce(cluster clustvar)

35/47

Factor Variables

» Factor (categorical) variables are variables that identifies
groupings. Examples: location, industry, education group,...

» Indicator variables are a special case of categorical variables
with binary values. Examples: sex, immigrant status,...

» In regressions, you add a i. in front of a variable to declare it
as a factor variable: reg y i.group

» On the other hand, c. is used to declare variables as
continuous
> Interactions? Use # operator
» Two factor vars? reg y i.sex i.group i.sex#i.group
» Shortcut: reg y i.sex##i.group
» Interactions involving continuous variables?
reg y i.sex age i.sex#c.age
reg y 1i.sex#i#c.age
» You can declare the omitted category using ibX.var where X
is the number of the category to be omitted

36/47

Panel Data

| 2

>
>
>

>
| 4

You might be interested in estimating a fixed effects or
random effects model using panel data

Define data as a panel: xtset cs_var time var
Observations must be unique by (cs_var, time_var)
Panel regression:

xtreg depvar [indepvar] [if] [, options]
Default is a random effects model. Options: re, fe
Standard error options: vce ()

With panel data, you can use time series operators

>
>
>

Lags: L.var, L2.var, ...
Leads: F.var, F2.var, ...

Difference: D.var

» Seasonal difference: ..., S12.var, ...

37/47

Accessing Results

» The objects that are stored after estimation can be identified
using
ereturn list

> Stata gives us an easy way to access coefficient estimates and
standard errors:

_b[varname]
_se[varname]

» You can also predict the dependent variable based on the
estimated model

predict newvarname [, xb]
or get the residuals from the regression

predict newvarname, residuals

38/47

Detour: Installing User-Written Packages

> ssc install pkgname [, replace]
» This downloads packages and files from Statistical Software
Components (SSC) archive
» Popular: outreg2, ivreg2, oaxaca, reghdfe
> net install pkgname [, replace force from(url)]
» Downloads and installs ado files to Stata from internet or
physical media
» Might be useful: usespss — This is not too useful if you have
Stata version 16 or higher.

39/47

Saving Results: outreg?2

>
>

Install: ssc install outreg?2

Simple way to export regression results in a format which is
easier to incorporate into a paper: Word, Excel, TEX

Structure:

outreg2 using filename [, options]
Saving options: replace, append
Output options: word, excel, tex

Titles, notes and variables: ctitle(), addnote() (used in
the first outreg?2 call), drop(), keep(), addtext ()

Example:

reg price weight

outreg2 using file, replace ctitle(Regl)
reg price weight length

outreg?2 using file, append ctitle(Reg2)

Related commands: putexcel, estout, esttab

40 /47

QOutline

Keeping Track of Work: do-files and log-files
Data Management and Description
Operations with Data

Other Tools
Macros: Working with Locals and Globals
Conditionals and Loops
Working with Big Data Sets

Linear Regression: Estimation and Reporting Results
Graphics

Good Practices for Coding

Helpful link

https://www.stata.com/support/faqs/graphics/gph/stata-graphs/

Visual overview for creating graphs

To view examples, scroll over the categories =
below and select the desired thumbnail onthe Scatter and line plots
menu at the right.

.

seee LI e °*°
Scatter and line plots . *,° °

uip °
Range and area plots

H Bar graphs Ny
Pie charts NV

== Dot charts

/ Distribution plots

7 ROC analysis

\ Regression fit plots

.' + Survival graphs
Time-series plots

S VAR and VEC

41/47

https://www.stata.com/support/faqs/graphics/gph/stata-graphs/

Histograms and Kernel Densities

.008

Kernel density estimate

Density
1004 00!
Density

002 003 .004 .005

.002
001

© T T T 200 300 400 500 600
200 300 400 500 600 length
length kernel = epanechnikov, bandwidth = 20.1510

> histogram var [if] [, cont_ops|disc_ops options]
» Some options: discrete, bin(#), normal, kdensity
» kdensity var [if] [, options]
» Some options: kernel (), bwidth(#), n(#), normal
> Some kernel options: epanechnikov (default), gaussian,
triangle

42/47

Twoway Plots

[graph] twoway plot [if] [, twoway_opts]
plot: (type vars [if] [, opts])

» First variable will be the vertical axis and the second will be
the horizontal axis

> Types: scatter, line, 1fit, 1fitci, ...
» You can also use || to separate plots instead of ()

> For example: scatter + 1fit

. twoway (scatter le year) (1fit le year)

2

.
8 e

1900 1910 1920 1930 1940
Year

o lifo expoctancy Fitted values

43 /47

Graph Options

> Title options: title("text"), subtitle("text"),
note("text")

> Axis options: xtitle("text")/ytitle("text"),
xlabel(range) /ylabel(range)

> Legend options: legend(subopts)
Important suboption: label (# "name")

> Background option: graphregion(color(white))
» Multiple graphs: by(var)

* When you use 1ine, make sure that your data is sorted in the x
variable

44/ 47

Saving Figures
graph save [graphname] filename [, replace]

» Saves the graph to disk with default .gph format
» Related command: graph use filename

» You can combine graphs (see graph combine)

graph export filename.suffix [, options]

» Important options:
» name() — name of graph window to export
» as — file format if suffix not specified
> replace
> It is best if you export your graphs in vector-format — this is
so you don't get blurry images if you make the image larger
= .eps or .pdf

45 /47

Outline

Good Practices for Coding

Dos and Don'ts (not definitive)

» Use descriptive names for variables and functions.
Complement with comments. Be consistent.

» Try to use relative paths (or macros) to point to files that you
are using. This helps when someone else is running the code
in a different computer.

» Try to make directories (separate folders which serve different
functions):

» Separate inputs from outputs
> Separate raw files from intermediate files (Never overwrite your
raw data)

> If possible, run your code in small chunks to check for errors.
Also, try to write in tests to see if you are still on the right
track.

46 /47

Simple Tips for Big Data

» Compress your data to use variable types appropriate to its
content

» Avoid strings if you can (use value labels instead)
» Take advantage of Stata’s factor variables features.

» Use one variable instead of multiple indicator variables
» Do not store squared variables, interactions, or lagged values

» Try to use optimized commands, if possible

> gsort is useful but not very efficient. You may want to create
a negative variable and use sort instead

» Drop variables which you will not use

47 /47

	Keeping Track of Work: do-files and log-files
	Data Management and Description
	Operations with Data
	Other Tools
	Macros: Working with Locals and Globals
	Conditionals and Loops
	Working with Big Data Sets

	Linear Regression: Estimation and Reporting Results
	Graphics
	Good Practices for Coding

