Income Risk Inequality: Evidence from Spanish Administrative Records

Manuel Arellano1 Stéphane Bonhomme2 Micole De Vera1 Laura Hospido3
Siqi Wei1

1CEMFI
2University of Chicago
3Banco de España and IZA

16 December 2021
SAEe 2021

The opinions and analysis are the responsibility of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem.
Introduction

- **Motivation:** understanding individual income risk has been a central motivation of the income dynamics literature and is a key determinant of economic decisions
- **Goal:** develop a methodology for constructing measures of individual income risk and measuring inequality
- **Methodology:** prediction-based approach, leveraging availability of administrative records of employment histories
- **Alternative approaches:**
 - Statistical models of the dynamics of income with a small state space, often in combinations with models of choice
 - Recent nonparametric approach to income dynamics in the spirit of Guvenen et al. (2021) produces statistics such as the conditional moments of income growth that are related to income risk, yet this approach does not target risk directly
 - Subjective probabilistic expectations from surveys (Dominitz and Manski, 1997)
Our focus: Inequality of individual income risk

- Salient features of the Spanish labor market have been the high level of unemployment and its large cyclical fluctuations.
- Inequality in income risk is related to unemployment, but also the large share of short-term temporary employment.
- We find that income risk is highly unequal in Spain: more than half of the economy has close to perfect predictability of their income while others face considerable uncertainty.
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality

Conclusions
Linked social security, tax and census records (MCVL)

- Panel data obtained by matching social security employment histories with income tax and census records for a 4% sample of social security affiliates from 2005–2018

- **Sample selection:** Ages 25–55, no self-employment, no Basque country or Navarre, males (for this presentation)

- **Income concepts:**
 - **Labor income:** individual income from paid employment in a calendar year, as reported by employers to the tax authority. For statistics on income inequality and dynamics,
 - Residualized earnings net of age dummies by year and gender
 - Trim earnings below a threshold (working part time for one quarter at the minimum wage)
 - **Extended measure:** more comprehensive and includes
 1. observations below the threshold including zeros
 2. unemployment benefits
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality

Conclusions
Goal: build open-access, cross-country harmonized database of rich micro statistics on earnings inequality and earnings dynamics from administrative panel data

Initiative by Fatih Guvenen (Minnesota), Luigi Pistaferri (Stanford), and Gianluca Violante (Princeton)

Database scheduled for launch in 2022

- **Brazil:** “Earnings Inequality and Dynamics in the Presence of Informality: The Case of Brazil” by Engbom, Gonzaga, Moser, and Olivieri.
- **Canada:** “Four Decades of Canadian Earnings Inequality and Dynamics Across Workers and Firms”, by Bowkus, Guin-Bonenfant, Liu, Lochner, and Park.
- **Denmark:** “Trends in Income Risk in Denmark 1987-2016” by Leth-Petersen and Saeverud.
- **France:** “Inequality and Earnings Dynamics in France: National Policies and Local Consequences”, by Kramarz, Nimier-David, and Delamotte.
- **Germany:** “Inequality and Income Dynamics in Germany”, by Drechsel-Grau, Peichl, Schmieder, Schmid, Walz, and Wolter.
- **Italy:** “Labor Reforms and Earnings Dynamics: The Italian Case”, by Hoffman, Malacrino, and Pistaferri.
- **Mexico:** “Income Dynamics and Inequality: The Case of Mexico”, by Puggioni, Calderón, Ceballos Zurita, Fernandez Bujanda, Gonzalez, and Jaume.
- **Norway:** “Earnings Dynamics and Its Intergenerational Transmission: Evidence from Norway”, by Halvorsen, Ozkan, and Salgado.
- **United States:** “U.S. Long-Term Earnings Outcomes by Sex, Race, Ethnicity, and Place of Birth”, by Abowd, McKinney, and Janicki.
- **United Kingdom:** “Income Dynamics in the United Kingdom 1975-2020”, by Bell, Bloom, and Blundell.
- **Spain:** “Income Risk Inequality: Evidence from Spanish Administrative Record”, by Arellano, Bonhomme, De Vera, Hospido, and Wei.
- **Sweden:** “Income Dynamics in Sweden 1985-2016,” by Friedrich, Laun, and Meghir.
Brief summary of selected results

- **Income inequality**
 - Inequality in earnings increased in the recession, driven mostly by inequality in the bottom part of the earnings distribution (Bonhomme and Hospido, 2017).
 - Cohorts starting during the recession have an initial lower earnings distribution but a subsequent steeper profile.

- **Income changes**
 - Dispersion in income changes increases during the recession (Storesletten et al., 2004; Guvenen et al., 2014).
 - Skewness in income changes becomes more negative in the recession consistent with procyclicality of skewness of income growth well-documented in several countries (Busch et al., forthcoming; Hoffmann and Malacrino, 2019; Pora and Wilner, 2020).
 - Dispersion and skewness of future income depends on past income suggesting important nonlinearities in earnings dynamics (Arellano et al., 2017; Guvenen et al., 2021).
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
Income Prediction and Income Risk

► **Main idea:**
 ► We mimic the agent’s prediction problem as closely as we can (in the absence of expectations data)
 ► Income risk faced an agent refers to features of this predictive distribution of income (in this paper, we mainly focus on the dispersion)

► Target the distribution of income level Y_{it} given predictors X_{it}:
 ► **Micro predictors:** past income, past employment, labor contract types, demographics
 ► **Macro predictors:** GDP growth rate and unemployment rate (national and provincial)
A coefficient of variation (CV) measure of income risk

Main measure: Coefficient of variation, computed as the ratio of the MAD of income divided by the mean income, conditional on X_{it}

$$CV(X_{it}) = \frac{\text{mean absolute deviation}}{\text{mean}}$$

$$= \frac{\mathbb{E}(\left| Y_{it} - \mathbb{E}(Y_{it} | X_{it}) \right| | X_{it})}{\mathbb{E}(Y_{it} | X_{it})}$$

An individual with an expected income of 20,000 euros and a CV of 10% expects a deviation of her next year’s income from its mean of ± 2,000 euros

Notes:

- The choice of MAD instead of the SD in the numerator is to minimize sensitivity to extreme observations
- When CV is small, it can be approximated by the standard deviation of log income,
 $$CV(X_{it}) \approx \sqrt{\frac{2}{\pi}} \text{Std}(\text{log } Y_{it} | X_{it})$$. However, the CV remains well-defined when $Y_{it} = 0$.

Econometric approach

- Estimating the numerator and the denominator of the CV are two prediction tasks.
- Since $Y_{it} \geq 0$ and $|Y_{it} - \mathbb{E}(Y_{it} | X_{it})| \geq 0$, a natural parametric estimator is based on **exponential specifications**:

$$
\mathbb{E}(Y_{it} | X_{it}) = \exp(X'_{it} \beta)
$$

$$
\mathbb{E} (|Y_{it} - \mathbb{E}(Y_{it} | X_{it})| | X_{it}) = \exp(X'_{it} \gamma)
$$

- We estimate these two quantities using two **Poisson regressions** and report the ratio.
Discussion

Welfare interpretation to CV

Following Lucas (1987), an approximation for the welfare gain from eliminating consumption risk is given by

\[
\text{Welfare gain} \approx \frac{\pi}{4} \times \theta_i \times CV(X_{it})^2
\]

where \(\theta_i \) is individual coefficient of risk aversion

Considerations

- Log-normality of income may not be a good approximation \(\Rightarrow \) higher-order moments of the predictive income distribution such as skewness or kurtosis will matter

- Welfare interpretation depends on specified utility function: under Stone-Geary utility where there is a subsistence consumption level, inequality in CV will underestimate the degree of inequality in the economic costs of risk
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
At least half of the Spanish economy at any time faces little uncertainty in future income.

Distribution of CV has a long right tail which lengthens in the recession.
Inequality of income risk increased in the recession

Changes driven by the top of income risk distribution
High income individuals face low levels and small dispersion of income risk in contrast to individuals at the bottom of the income distribution.

Younger individuals (less than 30) tend to face higher levels of income risk and larger income risk dispersion.
Income risk is highly persistent over time, especially for low income risk levels.

More than half of the Spanish economy is effectively shielded from income risk: bottom half of the risk distribution today face virtually no risk next year.
Civil servants are known to enjoy high levels of job and income security.

CV levels are low compared to rest of economy: 90th percentile comparable to median of overall distribution.

CV distribution virtually unaffected by the recession.
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
Robustness checks

Main Concerns
▶ Chosen predictors do not correspond to the agent’s information set
▶ Prediction model is misspecified

Robustness
▶ Fixed discrete unobserved heterogeneity
▶ Flexible predictors using neural nets
▶ CV robust to outliers
▶ Quantile-based measure of income risk
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality
 Measuring Individual Income Risk
 Main Results
 Robustness Checks
 Results from Subjective Expectations

Conclusions
We compare our CV measure of income risk to a measure based on subjective expectations data.

Broad agreement between our prediction-based measure and the subjective expectations-based measure (in spite of measurement differences) increases our confidence in both measures.

We rely on subjective income expectations questions from the 2014 Spanish Survey of Household Finances (EFF).

Assuming a household-specific log normal random walk predictive income process, we estimate subjective standard deviations of income growth.
Subjective standard deviations: Main results

Many households face low levels of risk but there is substantial dispersion between households.

Subjective standard deviations tend to be higher for households with low income and the young.
Outline

Introduction

Data

Some Statistics on Income Inequality and Dynamics

Income Risk Inequality

Conclusions
Conclusions

▶ We have documented a number of new empirical facts on income inequality and income dynamics in Spain

▶ We developed a methodology for constructing measures of individual income risk and measuring income risk inequality:
 ▶ Evidence of high inequality of income security in Spain
 ▶ A large mass of workers with negligible income risk coexists with many who anticipate large fluctuations in future earnings

▶ Key patterns of individual income risk:
 ▶ Income risk is more unequal and higher on average for the young
 ▶ Inequality of income risk increased during the Great Recession
 ▶ Income risk is more unequal and higher for those with lower income
 ▶ Low levels of risk are more persistent than higher levels of risk
Some of the underlying causes of the inequality of income risk that we have documented are familiar to labor economists that have studied the Spanish labor market.

Our perspective abstracts from shorter term labor market transitions and puts the focus on the unequal security that individuals face at a relevant time horizon.

Open questions:
- How are individual risks mitigated at the household level?
- How much of income risk is exogenous to the agent and how much is a result of choice?
- What are the macroeconomic consequences of the heterogeneous patterns of individual income risk?
THANK YOU!
Feel free to email me for any questions, comments or suggestions:
micole.devera@cemfi.edu.es

More details on extended measure

- The fraction of (male) observations below the threshold fluctuates between 3% in 2005 and 22% in 2013
- If no labor contract or UI benefits are observed in a full year, annual income is set to zero
- We exclude segments of more than two consecutive years without a contract
Both P90-P10 and σ inequality increased during the recession

Lower inequality increases around the recession while upper inequality stays flat
Median earnings profiles for young workers

The diagram shows the median earnings profiles for different age groups (25, 30, and 35 years old) across different cohorts (2005, 2007, 2010, and 2013). The x-axis represents the years 2005 to 2015, while the y-axis represents the P50 of log earnings. The shaded areas highlight the years 2005 to 2010 and 2010 to 2015 for 30 and 35 years old respectively.
Dispersion and skewness of one-year log earnings changes

(a) Dispersion

(b) Upper & Lower Dispersion

(c) Skewness
Conditional dispersion and skewness of one-year log earnings changes

(a) Dispersion

(b) Skewness
Welfare interpretation to CV: Stone-Geary preferences (1/2)

Consider utility

\[U_i(C_{it}) = \frac{(C_{it} - C_m)^{1-\theta_i} - 1}{1 - \theta_i} \]

with \(C_{it} = \lambda(X_{it})Y_{it} \) for proportionality factor \(\lambda(X_{it}) \)

Suppose \(\ln(C_{it} - C_m) | X_{it} = x \sim \mathcal{N}(\mu(x), \sigma(x)^2) \)

Agent is willing to give up \(a \)% of consumption each period to eliminate income risk such that

\[U_i(\mathbb{E}(C_{it}|X_{it})(1-a)) = \mathbb{E}[U_i(C_{it})|X_{it}] \]

Then,

\[a \approx \frac{\pi}{4} \theta_i \frac{\mathbb{E}(C_{it}|X_{it})}{\mathbb{E}(C_{it}|X_{it}) - C_m} CV^2 \]
Welfare interpretation to CV: Stone-Geary preferences (2/2)

\[a \approx \frac{\pi}{4} \theta_i \frac{\mathbb{E}(C_{it}|X_{it})}{\mathbb{E}(C_{it}|X_{it}) - C_m} CV^2 \]

- With \(C_m = 0 \) this simplifies to the approximate welfare gains under CRRA utility.
- For individuals whose consumption is close to the subsistence level (i.e., \(C_m/\mathbb{E}(C_{it}|X_{it}) \) is non-negligible), the squared CV underestimates the welfare cost of income risk.
- We find risk and income are inversely correlated so a CV-related measure will tend to underestimate the degree of inequality in the welfare cost of risk.
Augment the predictor set as \((X_{it}, \xi_i)\) where \(\xi_i\) is a latent component.

Standard RE or FE approaches are intractable.

Proposal: Grouped fixed effects (GFE) estimator as in Bonhomme et al. (2021)
 - Two-step: (1) classify individuals by k-means, and (2) estimating model allowing for group-specific heterogeneity.
 - Can be extended to embed reclassification.
 - Benefit of this approach is that we can handle incomplete models where we do not need to specify feedback processes or initial conditions.
 - Option to allow specific unobserved heterogeneity components: one for conditional mean, one for conditional MAD.
$K = 4$ for both numerator and denominator
Estimating CV with neural nets

Focus on 1-layer NN with ReLU link estimated with a Poisson loss function

Number of nodes chosen with single-fold cross-validation ⇒ 8 nodes for denominator and 7 nodes for numerator
Quantile-based risk measures (1/2)

- Model conditional distribution of log-income using quantiles
- Report dispersion of the predictive distribution measures by $P90(X_{it}) - P10(X_{it})$
By modeling the entire predictive distribution, we are able to document more than dispersion and location.

Kelley skewness:

\[
P_{90}(X_{it}) - 2P_{50}(X_{it}) + P_{10}(X_{it})
\]

\[
P_{90}(X_{it}) - P_{10}(X_{it})
\]

Skewness decreases in recessions, driven by less individuals with higher skewness.
Robust CV (Arachchige et al., 2020)

\[
\tilde{CV}(X_{it}) = \frac{\text{median}(\left| Y_{it} - \text{median}(Y_{it} | X_{it}) \right| | X_{it})}{\text{median}(Y_{it} | X_{it})}
\]
Subjective probabilistic income expectation question

We are interested in knowing how you think the total annual income of your household will change in the next 12 months. Divide 10 points among the five options below, assigning more points to the options you think are more likely:

- Drop of more than 10%
- Drop between 2% and 10%
- Approximately steady (falls or rises of no more than 2%)
- Increase between 2% and 10%
- Increase of more than 10%
Estimating subjective standard deviations (1/2)

For every person, we observe the number of points allocated to each of the five events, \(\hat{p}_j \): \(\Delta y < -10\% \), \(-10\% < \Delta y < -2\% \), \(-2\% < \Delta y < 2\% \), \(2\% < \Delta y < 10\% \), \(\Delta y > 10\% \)

Assume log income follows a RW with (i) HH-specific drift \(\mu \) and (ii) Gaussian shocks with HH-specific SD \(\sigma \)

Interpret elicited probabilities \(\hat{p}_j \) as noisy measurements of \(p_j \) due to rounding and inherent randomness in elicitation

If \(\hat{p}_j \) are regarded as sample frequencies from a hypothetical random sample of size \(m \), they are unrestricted MLE of \(p_j \)

We use an adjusted (posterior mean) estimator:

\[
\tilde{p}_j = \frac{\hat{p}_j + (1/2m)}{1 + (J/2m)}
\]

with the advantage \(\tilde{p}_j \in (0, 1) \) so the inverse normal cdf transformation is defined with \(\tilde{p}_j = 0 \) or 1
We implement a Berkson estimator that enforces the Gaussian restrictions on the posterior means \(\tilde{p}_j \).

This estimator is based on the inverse normal probabilities:

\[
q_1 = \Phi^{-1}(1 - c_1) = 0.1\beta + \alpha \\
q_2 = \Phi^{-1}(1 - c_2) = 0.02\beta + \alpha \\
q_3 = \Phi^{-1}(1 - c_3) = -0.02\beta + \alpha \\
q_4 = \Phi^{-1}(1 - c_4) = -0.1\beta + \alpha
\]

where:

\(\alpha = \mu / \sigma \)

\(\beta = 1 / \sigma \)

\(c_j \) are cumulative probabilities \(c_j = \sum_{k=1}^{j} p_k \).