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Abstract
I build a novel framework to empirically disentangle productivity from de-
mand shocks at the firm level and measure their pass-through to worker wages.
Measuring the pass-through of firm-level shocks contributes to understand-
ing how firms affect wage inequality and wage dynamics. My analysis lever-
ages a unique Portuguese data set that combines matched employer-employee
data, financial statements data, and firm-product information on quantities and
prices. The productivity, demand, and labor market advantages processes are
inferred from observed data. I find substantial cross-sectional heterogeneity
across firms along these three dimensions. Moreover, these features of the firm
evolve in rich, nonlinear ways. Most firms have highly persistent states for
most shocks, but poor-performing firms with large positive shocks have much
less persistent states. In an environment with wage adjustment costs, I find
that wages are not adjusted in response to productivity shocks, whereas I esti-
mate positive pass-through elasticities to demand shocks. There is suggestive
evidence that pass-throughs of adverse demand shocks are larger than those
of good ones. Moreover, the pass-through of good demand shocks is larger for
firms with better positions in their respective labor markets.

JEL codes: C33, D24, J31, J42, L11

Keywords: wage pass-through, nonlinear firm dynamics, imperfect competi-
tion, nonlinear panel data models, Portugal

∗I thank Manuel Arellano for his guidance and support throughout this project. I thank Dmitry
Arkhangelsky, Steve Bond, Julio Galvez, Nezih Guner, Josep Pijoan-Mas, Jan Stuhler, Lucciano
Villacorta, and seminar participants at CEMFI for valuable comments and suggestions. I am very
grateful to Pedro Raposo for his generous help in accessing the data used in this project. I gratefully
acknowledge funding from Spain’s Ministerio de Ciencia, Innovación y Universidades (PRE2018-
084485) and Ministerio de Economía, Industria y Competitividad (María de Maeztu Programme for
Units of Excellence in R&D, MDM-2016-0684).
†E-mail address: micole.devera@cemfi.edu.es; Website: micoledevera.github.io

https://micoledevera.github.io/papers/DeVera_JMP.pdf
mailto:micole.devera@cemfi.edu.es
https://micoledevera.github.io


1 Introduction

There has been a recent renewed and growing interest in measuring labor market
power owing to the rise of access to large administrative data that match employee
data with employer information. A large body of empirical work using matched
employer-employee data that has stemmed from the seminal work by Abowd et al.
(1999) has shown that firms play a role in explaining wage heterogeneity. Measur-
ing the pass-through of idiosyncratic firm shocks is a way to better understand the
ways in which firms affect not only wage inequality, but also wage dynamics. Due
to limitations in most available data sets, papers that measure wage pass-through
have focused on revenue or value-added shocks (e.g., Guiso et al., 2005) or relied
on parametric structural models to disentangle productivity and demand shocks
(e.g., Lamadon, 2016).1 Disentangling the pass-through of productivity from that
of demand shocks not only gives us a better picture of how firms use their market
power, but also a better understanding of the interaction of technology, the product
market, and the labor market.

In this paper, I measure whether persistent idiosyncratic shocks to firm pro-
ductivity or demand are translated to adjustment in wages, and see whether it
is mediated by labor market power. The main challenge in estimating the pass-
through of productivity and demand shocks, and understanding how they differ
based on labor market power of the firm, is that these objects are unobserved to
us but are crucial state variables when the firm makes decisions, including wage-
setting. Therefore, I develop and estimate a flexible, semi-structural framework of
firms and workers to disentangle different shocks that firms face and understand
how these affect the decisions of the firm, particularly in wage-setting. To be in-
ternally consistent, firms in my model operate in an environment with imperfect
competition in both the output and input markets.

This framework leverages a unique Portuguese data set that combines a matched
employer-employee data set, financial statements data, and a firm-product level
manufacturing survey that includes quantity and price information at the product
level. The availability of price and quantity data at the firm-product level allows
me to flexibly disentangle productivity from demand advantages. My empirical fo-

1Separate strands of the literature used reduced-form and quasi-experimental methods to study
the labor market effects of productivity shocks (e.g., Kátay, 2016; Chan et al., 2019) and demand
shocks (e.g., Garin and Silverio, 2018). I subsequently provide a more extensive review of the
related literature.
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cus is on large firms in three particular manufacturing sectors in Portugal between
2012 and 2018, which covers about 39% of total manufacturing employment and
24% of total manufacturing sales.2

Main results. The main contributions of this paper are twofold: methodological
and empirical. First, I propose a novel empirical framework to estimate productiv-
ity and demand advantages in the presence of imperfect competition in both the
output and input markets, as well as wage and capital adjustment costs. I propose
a simulation-based algorithm to estimate the model. As mentioned, this approach
is only possible because of a unique data set that combines matched employer-
employee data with financial statement data and firm-product specific data on
quantities and prices. On the one hand, the availability of matched employer-
employee data provides additional information to control for worker heterogeneity
affecting wages. On the other hand, availability of quantity and price data allows
us to disentangle flexibly variations in productivity and demand.

A key feature of this model is its flexibility which makes it appropriate as a tool
to measure important features of the environment and decisions of the firm. There
are two dimensions in which the flexibility of the model is crucial for the question
of interest. First, I allow for flexible dynamics in firm heterogeneity. Productiv-
ity, consumer preferences, and labor market power likely evolve in rich, dynamic
ways. For instance, an initially poor-performing firm may luckily hire an enthusi-
astic manager who overhauls the production process and serves as a good mentor
to new employees. This has an effect of boosting the productivity of the firm, and
increasing the attractiveness of the firm as an employer as workers would want
to benefit from good mentorship and a good working climate. Formally, the ar-
rival of the positive shock wipes out the persistence of the existing poor state of
the firm. Alternatively, the products of a well-respected firm might fall in favor be-
cause of new research of its adverse health effects—which not only shifts consumer
preferences away from the firm’s product, but also workers may actively avoid the
firm with concern of the health effects of producing the products. In this case, a
negative shock can erase the good history of a well-positioned firm. The model I
build is able to capture such kinds of dynamics by (i) specifying flexible dynamics
of firm heterogeneity where the persistence of a state may depend on the current

2Data on all other manufacturing sectors are available. The sectors I consider are the three largest
in terms of number of firms. I focus on these sectors only for computational tractability.
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shock and the state itself (Arellano et al., 2017), and (ii) allowing the shocks to
productivity, demand, and labor market position to be arbitrarily correlated.

The second dimension of flexibility comes from estimating empirical policy
functions of the firms which are agnostic to the specification of some structural
objects. To be concrete, I estimate a wage-setting equation that allows for wage
adjustment costs without having to specify the specific form of the wage adjust-
ment cost. We do not want our measurement to depend on the parametrization of
structural objects and so allowing for flexibility in that regard allows to be more
confident in the relationships that we measure.3

Second is an empirical contribution: using estimates from the estimated model,
I present findings on three dimensions of firm heterogeneity which I call produc-
tivity, demand advantages, and labor market advantages. Productivity measures
the efficiency by which firms convert inputs into outputs and is modeled as a con-
ventional factor-neutral term in the production function. Demand advantages, on
the other hand, capture horizontal product differences across firms—these are cap-
tured by differences in output demand holding prices fixed. Lastly, differences in
labor market advantages capture differences in the labor supply elasticities faced by
firms which may arise, for instance, from differences in amenities, which are non-
pecuniary attributes of the firm that changes the attractiveness of firms to workers
(e.g., Card et al., 2018).

The quantitative results of the model on these three dimensions of firm het-
erogeneity relate to their (i) cross-sectional distribution; (ii) dynamics; and (iii)
pass-through to worker wages.

I find that there is substantial cross-sectional heterogeneity across firms. Fixing
inputs, the firm a the 90th percentile of the productivity distribution produces 8

times more than the firm at the 10th percentile of the distribution. This is com-
parable to previous estimates of the productivity dispersion using alternative data
sets and estimation methods. Moreover, I find that holding prices constant, there
are large differences in output demand where the firm at the 90th percentile of the
demand advantage distribution has a demand that is about 72 times greater than
the firm at the 10th percentile.

3The model has a modular structure and can be extended to study other aspects of the firms
such as decisions on worker composition or on investment in research and development. A cost of
being flexible in this manner is that we are constrained by the kinds of counterfactuals which we
can measures, specifically those that do not change the policy functions of the firm.
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With respect to the labor market, I find that firms differ in the labor supply elas-
ticity they face. At the median, the labor supply elasticity with respect to wages is
about 0.6 but this ranges from 0.3 at the 10th percentile to 1.2 at the 90th percentile.
Under static wage-setting, i.e., without wage adjustment costs, this translates into
substantial markdowns where wages are 0.25–0.55 of marginal revenue product of
labor. In the presence of adjustment costs, we would expect that wages are a larger
share of marginal product to compensate for the static adjustment costs and the
dynamic value of wages as they affect future wage setting.

I find that there is a strong positive correlation between productivity and de-
mand advantages, as well as, demand and labor market advantages. This is par-
tially accounted for by dependence in the shocks—productivity and demand shocks
as well as demand and labor market advantage shocks are positively correlated—
and partly by dependence in initial states. I also find that the distribution of state
changes depend on the position of the firm in the overall distribution. In particular,
firms at the bottom of the productivity distribution face more uncertainty that is
skewed towards good shocks. On the other hand, firms at the top of the produc-
tivity distribution face less uncertainty but this uncertainty is skewed towards bad
shocks. This would suggest that there is more room for improvement at the bottom
of the distribution and more room to fall from the top of the distribution. Similar
patterns are seen in demand and labor market advantages.

This has important implications for the modeling of the dynamics of firm het-
erogeneity. Often, empirical models of productivity or demand parametrize the
dynamics of firm heterogeneity as linear autoregressive processes with Gaussian
errors. Such a model would suggest that the level of uncertainty faced by firms is
constant and that there is no asymmetry in the distribution of shocks. My results
suggest that these models are counterfactual and miss substantial asymmetries in
the dynamics of firm heterogeneity that will affect firm decisions.

Overall, I find that the wage effects of productivity and demand shocks are (i)
asymmetric and (ii) depend on the level of labor market advantages. I find the wage
pass-through elasticities of productivity shocks to be close to zero. On the other
hand, I estimate wage pass-through elasticities of demand shocks of around 0.02 for
bad demand shocks and 0.01 for good demand shocks. These estimates are smaller
compared to estimates of the pass-through of revenue and value-added shocks
which range between 0.06–0.09 (Guiso et al., 2005; Cardoso and Portela, 2009). The
pass-through estimates I estimate differ from those in the literature using revenue
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or value-added along multiple dimensions. Two substantive differences are (i)
I estimate distinct pass-through parameters for productivity and demand shocks
separately, and (ii) the framework I build accommodates for the presence of wage
adjustment costs.

The pass-through of bad demand shocks does not seem to be mediated by the
position of the firm in the labor market advantage distribution. On the other hand,
the pass-through of bad demand shocks are larger in firms which are at the top
of the labor market distribution. In fact, wages at the median of the labor market
advantage distribution face a pass-through elasticity of about 0.02 with respect to
a good demand shock. On the other hand, the firm at the 10th percentile of the
labor market advantage distribution does not adjust wages faced with the same
good demand shock.

Related literature and additional contributions. I highlight important contribu-
tions this paper makes to three particular strands of the literature. First, this paper
adds to the literature studying the wage pass-through of firm-level shocks using
microdata. A number of papers have studied the pass-through of sales or value-
added to worker wages using microdata starting with the seminal paper of Guiso
et al. (2005) using Italian matched employer-employee data. They specify a stochas-
tic permanent-transitory structure to value-added and specify a wage determina-
tion equation, then estimate the parameters by matching the covariance structures.
They find that firms provide full insurance against temporary shocks and partial in-
surance against permanent shocks to firm performance. The same has been found
in Portugal using a similar methodology (Cardoso and Portela, 2009). On the other
hand, Guertzgen (2014) finds that worker wages are also fully insured against per-
manent shocks in Germany. Minimal wage transmission of shocks to firm revenue
was also found in the United States (Juhn et al., 2018).

Shocks to sales or value-added are a composition of different shocks that the
firm faces (e.g., productivity shocks and demand shocks, to name two specific
ones). Another strand of this literature has focused on isolating the pass-through
of productivity shocks on wages. Primarily, two methods have been used to isolate
productivity shocks and study its pass-through to wages. On the one hand, there is
the more “reduced-form” strategy which combines production function estimation
to recover productivity shocks (such as proxy methods as in Olley and Pakes, 1996,
and its extensions) with covariance structures to estimate its pass-through to wages
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(e.g., as in Guiso et al., 2005, or VARs). Some papers using this strategy include
work by Kátay (2016) for Hungary and Chan et al. (2019) for Denmark. On the
other hand, there are the papers which build and estimate structural models to
disentangle productivity and measure its pass-through (Lamadon, 2016; Friedrich
et al., 2019; Lamadon et al., 2019).

A complementary literature studies the pass-through of product demand shocks
or shocks to product market competition to workers. This strand of the litera-
ture has previously focused on shocks to entire industries or sectors (Abowd and
Lemieux, 1993; Guadalupe, 2007; Verhoogen, 2008). With the availability of mi-
crodata, a few papers have focused on idiosyncratic shocks. Garin and Silverio
(2018) argue the quasi-randomness of import demand shifts to isolate the effect of
idiosyncratic product demand shocks on wages in Portuguese firms. Cho (2018)
compares workers in firms affected by the American Recovery and Reinvestment
Act, implemented during the Great Recession, to workers in firms not connected to
the act. These two papers find that firms that experience positive demand shocks
increase both employment and wages.

In contrast to the above mentioned papers, I measure the wage pass-through of
both productivity and demand shocks to the firm in a unified framework. More-
over, I explore nonlinearities in the wage pass-through of these shocks by allowing
the wage pass-through elasticity to flexibly depend on the level of productivity,
demand advantages, and labor market advantages.

Second, this paper relates to identification and estimation of production func-
tions and productivity, particularly in the presence of imperfect competition in
output or input markets.4 In my proposed framework, we allow for dynamic, la-
tent demand advantage heterogeneity reflecting horizontal differentiation in the
economy. Currently popular methods to estimate the production function (and,
consequently, productivity) using firm microdata have been developed under a
framework of competitive input and output markets. Competitive output markets
is an underlying identifying assumption in the so-called proxy method or con-
trol function approaches to production function estimation (Olley and Pakes, 1996;
Levinsohn and Petrin, 2003; Ackerberg et al., 2015). The bias that arises as a re-
sult of unobserved prices or demand advantages has been studied by Klette and
Griliches (1996). This output price bias spills over to the measurement of other

4De Loecker and Syverson (2021) provides a current review of the issues on productivity — both
its measurement and analysis.
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quantities relying on good estimates of the production function; for instance, in
productivity estimation or in price markup estimation using the methodology pro-
posed by De Loecker and Warzynski (2012) (Bond et al., 2021). Even if we are
willing to estimate a “composite” object that combines both productivity and de-
mand advantages using classical methods and revenue data, Guillard et al. (2018)
argues that the estimated composite may not behave as economically meaningful
especially if productivity and demand heterogeneity are correlated.

From the point of view of production function estimation, demand advantages
and output price variation are often considered nuisances. With the increasing
availability of detailed firm-level microdata, a popular way to deal with this is the
use of firm-specific price indices to deflate revenues into real terms (Eslava et al.,
2004; Smeets and Warzynski, 2013; Carlsson et al., 2016). For these papers, these
methods may also double to address the multi-product nature of firms. In this
paper, I use a similar method to separate real output and prices. However, as both
productivity and demand advantages are both objects of interest, I model both real
output and prices jointly.

This is not the first paper that has interest in identifying both productivity and
demand shocks separately. In their influential paper, Foster et al. (2008) argue that
productivity investments and shifts in the demand curve are two relevant dimen-
sions which helps us better understand firm growth, entry and exit.5 They are able
to disentangle productivity and demand shifts by focusing on quasi-homogeneous
goods where quality could be reasonably assumed to be fixed. Pozzi and Schivardi
(2016) take advantage that estimates of the elasticity of demand could be obtained
from self-reported information by firms. Another popular method to disentangle
productivity and demand shocks is to impose demand structure, as in the recent
paper by Kumar and Zhang (2019), for example. Jaumandreu and Yin (2019) im-
pose less demand side structure and allows for the flexible dynamics of latent
productivity and demand advantages while relying on firms that sell in both a
domestic and export market for identification. Rubens (2021) develops a model
of firms with heterogeneous productivity that face imperfect competition in both
input and output markets. The estimation procedure presented relies on a linear
dynamic process of latent productivity.

I propose to jointly estimate the production function, demand function, labor

5A paper with a related empirical focus is Carlsson et al. (2020) which estimates the effects of
firm-level productivity shocks and demand shocks on labor flows using a VAR framework.
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supply function, and the processes for productivity and demand advantages using
nonlinear dynamic panel data methods that allow for latent variables. The pro-
posed model extends standard models, such as that in Jaumandreu and Yin (2019)
and Rubens (2021), to allow for labor market power and nonlinear dynamics in pro-
ductivity and demand advantages. This empirical framework leverages the novel
results in the identification and estimation of these models (Hu and Schennach,
2008; Arellano and Bonhomme, 2016, 2017; Arellano et al., 2017). The identifica-
tion and estimation differ from currently popular methods of production function
estimation that center around the so-called proxy method or control function ap-
proaches and its extensions (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;
Ackerberg et al., 2015; Gandhi et al., 2020). It also extends results on the estima-
tion of production functions using linear dynamic panel data models (Arellano
and Bond, 1991; Blundell and Bond, 1998, 2000; Ackerberg, 2020). I highlight three
main advantages of the proposed method over the existing literature. First, we
can allow for multidimensional unobserved firm heterogeneity which many of the
control function approaches have difficulty with. Second, we allow for nonlinear
dynamics in the latent processes of productivity and demand advantages, which
cannot be accommodated in linear dynamics panel methods. Lastly, we also flexi-
bly estimate empirical policy functions for input decisions and wage-setting which
will allow us to study firm responses to shocks.

Lastly, this paper contributes to the small but growing literature that quanti-
fies responses of economic agents to latent shocks using flexible nonlinear semi-
structural empirical frameworks. The recent novel results on the identification and
estimation of nonlinear dynamic panel data models with latent variables (see, Hu
and Schennach, 2008; Arellano and Bonhomme, 2016, 2017) has provided us a set
of practical tools to flexibly measure nonlinearities in the responses of economic
agents to shocks by estimating empirical response functions. The main advantage
of directly estimating the decision rules of the agents as opposed to specifying a
structural model is that the estimates of the marginal quantities are robust to mis-
specification of the model primitives. In this paper, I focus on the estimation of
the wage pass-through which is a marginal quantity as it is the derivative of the
wage-setting policy function with respect to productivity and demand shocks.

A couple of papers have measured marginal quantities in various contexts us-
ing this type of flexible framework. Arellano et al. (2017) study nonlinear income
dynamics and the consumption responses of households to shocks in the persistent
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and transitory components of earnings, extending the framework by Blundell et al.
(2008) who estimate linear covariance structures. They find that the persistence of
earnings varies by the size and sign of the current shock and that these nonlinear
dynamics drives heterogeneous consumption responses to earnings shocks. Gálvez
(2017) studies the role of nonlinear household income risk on portfolio choices with
participation costs. Similarly, past earnings histories and the size and durability of
current income shocks are important to explain heterogeneous extensive and inten-
sive margin responses in portfolio choice. Without the aid of a structural model,
further policy counterfactuals cannot be performed.

In concurrent work, Aguirre et al. (2021) estimate a semi-structural model to
study firm investment decisions in the presence of borrowing constraints. Simi-
larly, I also study firm responses however I examine responses to both productivity
and demand shocks. As such, my framework differs from theirs in that I allow
for imperfect competition in both output and input markets. The final objects of
interest also differ. I am interested in the wage pass-through of firm shocks.

Outline of the paper. The remainder of this paper proceeds as follows. In Section
2, I describe the merged data sets used in the analysis, and provide a brief back-
ground on wage-setting in Portugal. In Section 3, I introduce an empirical frame-
work that distinguishes productivity from demand heterogeneity among firms who
have labor market power. I also discuss identification and estimation, as well as
present results on model fit. In Section 5, I document facts on the cross-sectional
heterogeneity and dynamics of productivity and demand heterogeneity. In Section
6, I discuss the dynamics of wages as it relates to adjustment costs and the pass-
through of productivity and demand shocks. Finally, I conclude in Section 7 with a
summary of the findings and discussion of future directions of work. An Appendix
contains additional results and technical details.

2 Data and institutional setting

2.1 Data description and variable construction

I combine a matched employer-employee data set, firm-level balance sheet and
income statement data set, and a manufacturing survey to form a longitudinal
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dataset of firms and workers. I focus on the manufacturing sector in continental
Portugal over the period 2012–2018.

Portugal’s matched employer-employee data set is the Quadros de Pessoal (QP)
which covers the universe of firms.6 It draws from a compulsory annual census of
firms that employ at least one worker conducted by the Portuguese Ministry of La-
bor and Social Security.7 Worker information is available for individuals working
in the firm in a reference week of the month of October of each year. Firms and
workers can be tracked over time and thus, the QP also forms a panel data set for
both workers and firms. Worker information in the QP is detailed and includes de-
mographics (age, gender, education), earnings (base wage, overtime pay, regularly
paid supplements, and irregular supplements), hours (normal hours and overtime
hours), occupation, and position in the firm hierarchy.

Balance sheet and income statement information is obtained from Sistema de
Contas Integradas das Empresas (SCIE). This information on business accounts is
available for all firms excluding public firms, not-for-profits, and financial firms.
This is collected as a compulsory survey to firms by the Portuguese Tax Authority.
On the other hand, information at the firm-product-year level is obtained from the
Inquérito Anual à Produção (IAPI) which is a manufacturing survey conducted on
a sample of firms with at least 20 employees. As it is only available for a subset of
large manufacturing firms, this data set limits the scope of the paper. The caveat
then is that the results may only be representative of manufacturing firms with
more than 20 employees. Total production recorded in the IAPI accounts for 90%
of total value of production. For each firm-product, I observe the volume of the
product sold (measured in specific units i.e., liters, kilograms, pieces, etc.) and the
value of the products sold in euros. From which, average selling price per unit of
the product can be computed.

Multi-product firms, real output, and price indices. The multi-product nature
of most firms in the manufacturing sector is an important feature that needs to be

6This data set has been used in multiple studies of both firms and/or workers. To name a
couple: Cardoso and Portela (2009) uses QP to study wage pass-through of sales using linear
covariance structures as in Guiso et al. (2005). Caliendo et al. (2020) combines QP with balance
sheet information and a manufacturing survey (as in this paper) to study the productivity effects of
hierarchical reorganization.

7Firms are required to make this information publicly available to its workers in the workplace.
This helps in monitoring the accuracy and improving the reliability of the information provided.
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accounted for in the model. However, as it is not the main focus of this paper, I
adopt a parsimonious solution. In general terms, I compute the real output of a
firm by valuing the quantities produced using fixed prices that I set to be constant
across firms as well as over time (chosen as the median price of the product in
2018). Prices are then an index obtained from dividing total revenues, or nominal
output, by real output. In Appendix A, I present the details and provide an intuitive
demonstration of how this approach separates quantity and price variation in the
presence of multiple products which preserves not only time-series variation but
cross-sectional variation, as well.

Sample selection on workers and firms. Though data on all manufacturing sec-
tors are available, in this paper, I focus on firms in three specific manufacturing
sectors: (i) food, (ii) clothing, and (iii) metal products, which are sectors 10, 14,
and 25 based on the 2-digit Portuguese Classification of Economic Activity (Classi-
ficação Portuguesa das Actividades Económicas, CAE Rev. 3), respectively.8 This is
solely to alleviate the computational burden. These sectors are the largest in terms
of the number of firms and cover about 39% of total manufacturing employment
and 24% of total manufacturing sales over 2012–2018. The identification of the
model, discussed in Section 4.2, relies on the panel dimension of the data. Moti-
vated by this, I restrict the data to include only firms that I observe for at least 2

consecutive years.
The matched employee-employer data is important for us to control for worker

heterogeneity. As discussed later, I compute a firm-level average wage rate net of
worker characteristics. For this exercise, I restrict the analysis to workers aged 18

to 55. The wage concept I use includes wages paid for both normal and supple-
mentary hours worked.

2.2 Wage-setting in Portugal

Collective bargaining agreements, often covering entire industries, are prevalent
in the Portuguese economy. In practice, their coverage extends to workers not af-
filiated with unions. However, these collective agreements are partially offset by
firm-specific agreements which allows firms room to maneuver when setting wages

8CAE Rev. 3 closely maps to NACE codes.
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(Bover et al., 2000; Cardoso and Portugal, 2005; Card and Cardoso, 2021). Specifi-
cally, two main features of the Portuguese economy admit this room to maneuver:
(i) collective bargaining agreements have narrow coverage and do not restrict links
between wage dynamics and firm performance, and (ii) prevailing wages are well-
above the wage floors set in collective bargaining agreements.

As many collective bargaining agreements cover a large number of firms in a
wide range of economic circumstances, the content of collective bargaining agree-
ments necessarily have limited jurisdiction and primarily focus on setting mini-
mum working conditions such as the minimum monthly base wage of different
categories of workers, overtime pay, and normal duration of work (Cardoso and
Portugal, 2005). Firms are, thus, free to adjust wages based on firm-specific condi-
tions as long as they satisfy the negotiated wage floors. Moreover, the frequency of
wage changes is not covered by the collective agreements.

The flexibility of changing wages (downward adjustment in particular) is most
relevant if prevailing wages are above the wage floors set in the collective bar-
gaining agreements. Card and Cardoso (2021) identify the collective bargaining
agreement relevant to individuals workers in the Portuguese matched employer-
employee data set and show that a typical worker receives a premium of around
20% over their relevant negotiated wage floor.9 This shows that firms adjust the
wages they pay on firm-specific conditions.

3 A semi-structural model of firm production with im-

perfectly competitive product and labor markets

We do not directly observe productivity, consumer preferences, or worker prefer-
ences and so measuring their pass-through to wages is not straightforward. More-
over, firm decisions are endogenous to these unobserved objects. We, however,
have access to imperfect measures of these objects and observe choices that were
based on these. It is then important to use the lens of a model to disentangle pro-
ductivity from demand advantages from labor market advantages in the data and
study how they affect decisions of firms.

As a measurement exercise, it is crucial that we impose limited structure on the

9The presence of wage rates well-above negotiated wage floors is similar to other countries with
systems of sectoral bargaining, for instance Spain and Italy (Adamopoulou and Villanueva, 2022).
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data to back out the real relationships between the observed data and the unob-
served objects. In the model discussed below, I present an attempt to accommodate
flexibility along multiple dimensions. First, I model these unobserved components
as general first-order Markov processes. In the context of productivity, this is in
contrast to empirical models of firm dynamics in the macroeconomics literature
where productivity is often parametrized to follow an AR(1) process. On the other
hand, this is a similar flexible assumption maintained in production function es-
timation using control function approaches (e.g., Olley and Pakes, 1996). This is
important because there are plausible scenarios that suggest rich dynamics in pro-
ductivity, demand, and labor market advantages.

Second, I model the responses of the firms to idiosyncratic shocks flexibly in that
some structural objects need not be specified. In the study of wage pass-through
it is important, for instance, to accommodate wage adjustment costs. Thus, in the
model, I allow wages to depend on past wages in an arbitrary manner—that is,
without specifying the exact shape of these adjustment costs. The main virtue
of this is that our measurement is not tied to certain parametrizations or modeling
choices of structural objects. However, we are limited by the types of counterfactual
analyses that could be credibly performed as in the Lucas (1976) critique.

In what follows, I will describe this flexible empirical framework for firms and
workers that distinguishes productivity and demand shocks in an environment
that allows for imperfect competition in the output and input markets.

Preliminaries. Time is indexed by t and is discrete with time points representing
years. Firms are indexed by j and workers are indexed by i. The specific firm that
a worker i works for in time t is j(i, t). Firms differ along three main dimensions:
productivity, demand advantages and labor market advantages. They operate and
compete with other firms in their relevant local product and labor market which,
in this paper, will be at the industry level determined by the 2-digit industry codes.

Production Technology. Firms use fixed tangible capital (Kjt), labor (Ljt), and
intermediate goods (Mjt) to produce a homogeneous good (whose quantity is rep-
resented by Yjt).10 Firms are heterogeneous in their efficiency to aggregate inputs

10The assumption of physically homogeneous final goods is an abstraction to distinguish techno-
logical efficiency from product market heterogeneity. This assumption is more plausible for some
products and industries than others. Foster et al. (2008), for instance, focus their analysis of the
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captured by a factor-neutral productivity term exp(ωjt).11 The production function
of the firm is given by

Yjt = exp(ωjt)×QY(Kjt, Ljt, Mjt)× εY
jt (1)

where QY is a function common to all firms that describes how inputs are aggre-
gated, and εY

jt are idiosyncratic, serially uncorrelated shocks to production.12 The
productivity term exp(ωjt) is observable to the firm at the beginning of the period
but εY

jt is not. Labor, measured by the number of employed workers, is treated as
homogeneous. This framework can be extended to include the treatment of het-
erogeneous labor types by allowing heterogeneous labor inputs to separately enter
the production function (e.g. high-education vs low-education workers).13 It is im-
portant to note that since inputs are endogenously chosen with productivity being
a key state variable, this production function cannot be estimated just by OLS. As
such, we will have to fully specify the empirical policy functions of the inputs given
productivity to complete the model.

Operating environment: product and labor markets. Firms operate in an envi-
ronment with imperfect competition in both product (output) and labor (input)
markets.

In the product market, firms compete in prices under monopolistic competition.
This particular market structure is plausible considering there are a large number of
firms within each manufacturing sector such that strategic interaction is difficult.
The residual demand curve for the final good faced by individual firms relates

roles of productivity and demand advantages on firm entry and exit to firms that produce one of
eleven specific manufacturing products they consider quasi-homogeneous.

11One can also allow for the interaction of the scalar unobservable with the inputs. In such a case,
input elasticities differ across firms because of this unobserved factor. Alternatively, one can also
interpret it as heterogeneity in capital- or labor-augmenting productivity driven by a single factor.

12Without additional information, we cannot separately identify transitory shocks to productivity
from classical measurement error.

13Alternatively, one can allow for a labor-augmenting productivity term to capture between-firm
differences in the productivity composition of the worker pool (Doraszelski and Jaumandreu, 2018;
Demirer, 2019). This introduces more nuanced identification issues and its study is of interest
for further research. Chan et al. (2019) take another approach and adjust the labor input for effi-
ciency based on unobserved worker “ability” taking advantage of the panel dimension in matched
employer-employee data to estimate a worker fixed effect.
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quantity demanded (Qdd
jt ) and prices (Pjt) in the following manner:

Qdd
jt = QD(Pjt, δjt)× εD

jt (2)

where δjt are demand advantages that capture differences in quantities demanded
between firms selling at the same price. These demand advantages capture hor-
izontal differentiation in the final output of firms, primarily resulting from id-
iosyncratic consumer preferences. There are multiple fixed or exogenous sources
of horizontal differentiation between firms’ output. Firstly, the most commonly
discussed example of horizontal differentiation is heterogeneous preferences of
consumers on product characteristics; for instance, local/foreign makes of auto-
mobiles (Goldberg, 1995), or sugar content in ready-to-eat cereals (Nevo, 2001).
Secondly, horizontal demand advantages may arise from spatial differentiation as
in the Hotelling (1929) model of the linear street. The general argument says that
with transportation costs, demand of buyers will be divided among producers ac-
counting for proximity. Thus, with a non-uniform distribution of buyers across
space, some firms will have better demand advantages simply because they are
located closer to the mass of consumers. Miller and Osborne (2014), for example,
study spatial differentiation and price discrimination in the cement industry in the
US. Thirdly, demand advantages may also arise from complex and idiosyncratic
historical reasons. Bronnenberg et al. (2007) document that by the end of the twen-
tieth century, most consumer goods were dominated by a small number of brands
in terms of value of sales. Taking advantage of spatial variation in the dominant
brands, Bronnenberg et al. (2009) show that this dominance does not reflect qual-
ity but can be tied to order of entry (which in some cases were over more than a
century ago).14 Moreover, they show high persistence of brand dominance.

On the other hand, the market structure of the labor market is monopsonistic
competition. Firms set wages (wjt) facing idiosyncratic residual labor supply curves
given by

Ljt = QL(wjt, Sjt)× εL
jt (3)

14As a case study of serendipity being a source of demand advantages, we can look to the rise to
popularity of Piaggio’s Vespa motor scooter in the 1950’s. The 1953 debut film of Audrey Hepburn
entitled Roman Holiday featured the Vespa for a few minutes. Reports suggest that 100,000 units
were sold right after the release of the movie when Piaggio was initially only planning for a total
run of 2,000 units (Sonnadara, 2013; de Burton, 2021). Vespa’s fall in popularity in the US is arguably
also by stroke of luck. In 1983, imports of the Vespa stopped after the US tightened federal laws on
emissions which Piaggio could not adapt to (Sonnadara, 2013).
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which is a function of set firm-level wages wjt and labor market advantages Sjt.
Such a labor supply curve could be microfounded using a model of wage-posting
where firms are characterized by a set of amenities which workers value differ-
entially (Card et al., 2018). As in the model for amenities, these labor market
advantages capture job-specific and location-specific non-pecuniary compensation
or benefits which has been shown to be substantially different even among firms
within the same market (Sorkin, 2018; Lamadon et al., 2019; Sockin, 2022).15 How-
ever, labor market advantages may also reflect a firm’s access to larger local labor
markets or more streamlined hiring practices.

It is again important to note that prices and wages are endogenous in the model
and are choices that depend on the unobserved demand and labor market advan-
tages. As such, we would need to complete the model by specifying the empirical
policy functions. In the working model I will build, prices and materials are static
choices that are made simultaneously. As such, once materials are chosen, prices
are also set. Thus, we only need to specify the materials policy function in the
statistical model.

Dynamics of firm heterogeneity. As described above, firms are heterogeneous
along three dimensions: productivity, demand, and labor market advantages. These
firm advantages are persistent and evolve stochastically according to exogenous
first-order Markov processes.16 In particular,

ωjt =Q̃ω(ωjt−1, υω
jt ) (4)

δjt =Q̃δ(δjt−1, υδ
jt) (5)

Sjt =Q̃S(Sjt−1, υS
jt) (6)

15In the literature, amenities are typically modeled as fixed characteristics of the firm. There are
scenarios for which we might think that these could plausibly evolve exogenously over time. For
instance, a new train station may open near the firm which makes it easier for workers to commute
to work.

16Here we do not allow dynamics to depend on the business cycle, or calendar time, in general.
The results by Salgado et al. (2020) would suggest there may be interesting business cycle patterns
in the distribution of shocks to firm outcomes that we are not able to capture by this simplified
model. In a preliminary processing step, I take out sector-time averages of the variables of interest
which controls for the level differences that may be brought by the business cycle. However, the
choice to forgo modeling distributional dependence on calendar time is motivated by the short time
period of interest, 2012-2018, when the Portuguese macroeconomy appears to be stable. Extensions
of the model to include aggregate shocks is subject of future research.
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where Q̃(·, τ) are univariate conditional quantile functions for τ ∈ (0, 1), and
υω

jt , υδ
jt, υS

jt are idiosyncratic shocks to productivity, demand, and labor market ad-
vantages, respectively. These idiosyncratic shocks have uniform marginals and
may be contemporaneously correlated, but the vector (υω

jt , υδ
jt, υS

jt) is serially uncor-
related. Correlation in productivity, demand, and labor market advantages may
come from correlation in initial values or through correlated shocks. I restrict the
model such that there are no cross-effects, for instance with past demand advan-
tages directly affecting current productivity, but this extension can be accommo-
dated.

The flexible specification in the dynamics of these latent objects allows for us to
study rich dynamics which may have implications on firm decisions such as capital
investment, research and development, advertising, or wage-setting. For instance,
these general Markov models allow the persistence of productivity, demand, and
labor market advantages to differ depending on its level or the size and sign of the
shock. To illustrate in more concrete terms, a firm with low productivity and bad
position in the output market might be lucky to hire a new manager that overhauls
the production process and creates a better brand position for the product. This
shock to the firm will likely boost both productivity and demand advantages, and
its history as an unproductive firm with no brand value becomes irrelevant. In such
a case, the persistence of the past productivity and demand advantage is lower with
a large enough positive shock. Moreover, this scenario also illustrates that shocks
to productivity and demand advantages may be correlated.

Wage-setting. Faced with their individual residual labor supply curves described
in Equation 3, firms set firm-level wages to determine the amount of labor hired for
production. We also consider an evironment where there may be wage adjustment
costs. The empirical wage-setting equation of the firm is given by

wjt = Qw(wjt−1, Kjt, ωjt, δjt, Sjt)× εw
jt . (7)

Without adjustment costs, firms set wages as a markdown to marginal revenue
product of labor (MRPL). These markdowns are a function of the labor supply
elasticities. Both the MRPL and the labor elasticity are jointly determined by the
state variables (Kjt, ωjt, δjt, Sjt). However, in the presence of wage adjustment costs,
firms set wages taking into account the associated adjustment cost and the im-
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plications for future wage-setting. In such case, wages will also be a function of
past wages wjt−1. Note that this wage equation is a reduced-form policy function
which we will estimate from the data. It is, for instance, consistent with various
parametrizations of the wage adjustment costs which we do not need to specify.
The idiosyncratic serially uncorrelated shock εw

jt may represent optimization errors,
for example.

Only the firm-level wage rate, wjt is relevant to determine the labor quantity
supplied by the market. However, there is observed heterogeneity in wages across
workers hired by the same firm. To account for this, individual wages are modeled
to have a component that captures exogenous returns to time-varying characteris-
tics xit (e.g., age, tenure, occupation) and a fixed worker component αi; that is,

wit = wj(i,t),t ×QHC(xit, αi)× εw
it (8)

where QHC is the function that summarizes the market-determined returns to ob-
served characteristics. This proportionality relationship between the firm-level
wage and an individual level wage determined in the market is similar to the
wage determination in Heckman and Sedlacek (1985).17 Separability of the firm-
specific component from the worker component is convenient for estimation as the
human capital component can be estimated using wages in the matched employer-
employee data alone.

Price setting and materials input. Firms make two additional static decisions:
output prices and materials input. These are decisions made simultaneously after
wages are set and labor is realized. Prices are not subject to adjustment costs,
which is plausible considering the annual frequency of the data. Moreover, results
by Marques et al. (2010) suggest that prices are adjusted more often than wages.

Specifically, given the firm’s individual demand function and its cost function
(implied by its production technology), firms choose prices to maximize profits
equating marginal revenue to marginal costs. The reduced-form empirical pricing
function of the firm is given by

Pjt = QP(Kjt, Ljt, ωjt, δjt, Sjt)× εP
jt. (9)

17Non-proportional wages may be accommodated, for example, by specifying multiple wage
functions depending on worker characteristics, such as education.
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Intuitively, price-setting is a function of the demand faced by the firm (character-
ized by its demand advantages δjt), and the firm’s marginal cost which is a function
of level of production (Kjt, Ljt), wages (wjt), productivity ωjt, and labor market ad-
vantages Sj. Equivalently, we can instead specify the material input equation:

Mjt = QM(Kjt, Ljt, ωjt, δjt, Sjt)× εM
jt (10)

where QM is the function that describes a firm’s material demand as a function of
state variables, and εM

jt is an idiosyncratic, serially uncorrelated shock in the firm’s
material usage. The idiosyncratic shock captures unexpected inefficiencies (waste)
or savings in the usage of materials, or can represent random optimization errors.

There are two things to note about these equations. First, given the setting, once
material input is chosen, then prices are simultaneously determined—this implies
that the price-setting equation is redundant once we have specified the material
input policy function. Second, the decision for materials depend on a number
of unobservables including both productivity and demand advantages. As such,
standard control function approaches that use materials as a proxy variable (e.g.,
Levinsohn and Petrin, 2003; Ackerberg et al., 2015) cannot be applied as productiv-
ity cannot be fully inverted from observing materials, capital and labor alone.

Capital and investment. To complete the model, we specify a law-of-motion for
the predetermined input, capital:

Kjt = QK(Kjt−1, wjt−1, ωjt−1, δjt−1, Sjt−1)× εK
jt. (11)

The function QK tells us how last period capital Kjt−1 is depreciated and how
previous investment decisions affect current capital. The idiosyncratic shock εK

jt
captures possible shocks to fixed capital (i.e., unexpected savings or depreciation)
or measurement error. This reduced-form law-of-motion of capital subsumes the
dynamic investment decision of the firm which is a function of the previous level
of capital (possibly, as a state variable to determine capital adjustment costs), as
well as additional determinants of capital investment including the previous levels
of wages, productivity, demand, and labor market advantages.
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4 Parametrization, identification, and estimation

In this section, I will specify a flexible parametric version of the model above. The
specifications for the dynamic processes of the latent firm heterogeneity will be as
in Arellano et al. (2017) where we flexibly specify the conditional quantile functions
of the processes. For the policy functions, I specify tighter specifications where I
consider flexible dependence of the conditional mean on the state variables. I then
proceed with a discussion of parametric and non-parametric identification, and
provide a simulation-based algorithm for estimation.

4.1 Empirical specification

Production, output demand, and labor supply. The general model is flexible
enough to allow for arbitrary specifications of the production function, output de-
mand function, and labor supply equation—Equations (1), (2), and (3), respectively.
In this paper, I consider more parsimonious specifications although, in principle,
more general formulations are possible.

I consider simpler specifications for the production function and residual output
demand functions. In particular, I consider a production function that is log-linear
in the inputs and productivity, i.e., Cobb-Douglas:

yjt = βkk jt + βmmjt + β``jt + ωjt + ε
y
jt. (12)

As a simplification, we specify ε
y
jt ∼ N (0, σ2

y ).18 Similarly, the output demand
function is log-linear in prices and demand advantages:

yjt = αp pjt + δjt + εd
jt, (13)

where yjt is log output, pjt is log prices, and δjt is the demand advantage. Then,
αp captures the elasticity of demand faced by the firm. For simplicity, I assume
that εd

jt ∼ N (0, σ2
d ). This specification mimics the demand model in Jaumandreu

and Yin (2019) who interpret this model as a first-order approximation to arbitrary
demand functions.

As the focus of this paper is on the labor market, I consider a more flexible

18It is straightforward to allow for an arbitrary distribution of the idiosyncratic innovation to
production by instead specifying the conditional quantile functions of ε

y
jt.
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specfication of the labor supply function to allow for heterogeneity in labor market
power across firms. In particular,

`jt = θw ln wjt + θw2(ln wjt)
2 + θws ln wjt × Sjt + θw2s(ln wjt)

2 × Sjt + Sjt + ε`jt, (14)

where ε`jt ∼ N (0, σ2
` ). The elasticity of labor supply with respect to wages is (θw +

2θw2 ln wjt + Sjt + 2θw2s ln wjt × Sjt) and thus varies across firms depending on the
level of wages and demand advantages.

As a normalization, without loss of generality, I do not include a constant in the
production function, product demand equation, or labor supply function.

Dynamics of latent firm heterogeneity. As previously discussed in Section 3, the
joint dynamics of the latent firm heterogeneity (productivity, demand, and labor
market advantages) is fully specified by Equations (4), (5), and (6). Instead of spec-
ifying a copula model that would describe the dependence structure of (υω

jt , υδ
jt, υS

jt),
I consider the following triangular formulation:

ωjt =Qω(wjt−1, uω
jt ) (15)

δjt =Qδ(δjt−1, uω
jt , uδ

jt) (16)

Sjt =QS(Sjt−1, uω
jt , uδ

jt, uS
jt) (17)

where uω
jt , uδ

jt, uS
jt are uniformly distributed, mutually independent, and serially

uncorrelated. Intuitively, this could be thought of as an othogonalization of the
shocks in the univariate processes. In Appendix B, I discuss in more detail how
this triangular representation relates to the system of univariate dynamic processes
in Equations (4), (5), and (6).

These conditional quantiles are parametrized in the following way, extending
Arellano et al. (2017):

Qω(ωjt−1, τ) =
K

∑
k=0

aω
k (τ)ϕω

k (ωjt−1), (18)

Qδ(δjt−1, uω
jt , τ) =

K

∑
k=0

aδ
k(τ)ϕδ

k(δjt−1, Φ−1(uω
jt )), (19)

QS(Sjt−1, uω
jt , uδ

jt, τ) =
K

∑
k=0

aS
k (τ)ϕS

k (Sjt−1, Φ−1(uω
jt ), Φ−1(uδ

jt)), (20)
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for t = 2, ..., T, where ϕω
k , ϕδ

k, and ϕS
k are dictionaries of basis functions for k =

0, 1, ..., and Φ−1(·) is the inverse of the standard normal cumulative distribution
function. As in Arellano et al. (2017), I choose these basis functions to be low-order
products of Hermite polynomials with ϕω

0 = ϕδ
0 = ϕS

0 = 0.
Note that the conditional quantiles above involve a continuum of parameters

indexed by τ ∈ (0, 1). In practice, I borrow the insight of Arellano and Bon-
homme (2016) and approximate the coefficients of the conditional quantile func-
tions. Consider Equation (18) to illustrate. We approximate the coefficients aω

k (τ)

as piecewise-linear interpolating splines on a grid [τ1, τ2], [τ2, τ3], ..., [τL−1, τL] con-
tained in the unit interval. I consider an equidistant grid so that τ` = `/(L + 1),
and choose L = 11. To extend this to the tails, we specify that the intercept aω

0 (τ)

match the quantiles of an exponential distribution on (0, τ1] and [τL, 1) with expo-
nential parameters λω

− and λω
+, respectively. Similar approximations are used for

the coefficients in Equations (19) and (20).
To complete the model for the dynamics of the latent heterogeneity, we need to

specify the initial distributions of ωj1, δj1, and Sj1. As the dynamics of the three
latent firm components interact nonlinearly, it is likely that the initial conditions
also depend on each other in nonlinear ways. Taking a flexible random effects
approach, I allow the distribution of the initial values to depend on the age of
the firm at first observation agej1 and log capital at initial observation k j1. Again,
we consider a triangular structure to flexibly model the dependence of the initial
conditions:

Sj1 =
K

∑
k=0

bS1
k ϕS1

k (k j1, agej1) + εS1
j1 , (21)

δj1 =
K

∑
k=0

bδ1
k ϕδ1

k (Sj1, k j1, agej1) + εδ1
j1, (22)

ωj1 =
K

∑
k=0

bω1
k ϕω1

k (δj1, Sj1, k j1, agej1) + εω1
j1 , (23)

for a given set of basis functions ϕS1
k , ϕδ1

k , and ϕω1
k chosen to be low-order prod-

ucts of Hermite polynomials. I specify that εS1
j1 ∼ N (0, σ2

S1
), εδ1

j1 ∼ N (0, σ2
δ1
), and

εω1
j1 ∼ N (0, σ2

ω1
). We can alternatively specify the full conditional distributions of

the initial conditions by specifying the conditional quantiles, as we did for the dy-
namics. I opt to use a more parsimonious specification and only specify the flexible
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dependence through the conditional mean.19

Individual wages. We assume the following specification for the log of individual
wages:

ln wit = ln wj(i,t),t + β1ageit + β2age2
it + αt + αi︸ ︷︷ ︸

ln QHC(xit,αi)

+εw
it, (24)

where αt and αi are year and individual fixed effects, respectively. Under the strong
assumption that workers do not sort into firms by individual fixed effects, then we
can estimate the human capital part of the wage equation in a first step. In the
framework presented previously, we treat all workers in a similar way in produc-
tion (i.e., perfectly substitutable between each other), then it is consistent to assume
that there is no sorting. I acknowledge that this is a strong, counterfactual assump-
tion and future work will attempt to account for this.20

Empirical response functions. We now specify the conditional distributions of
wages, materials, and capital based on the reduced-form policy functions of the
firm in Equations (7), (10), and (11), respectively. I consider flexible specifications
of the conditional mean:

ln wjt =
K

∑
k=0

bw
k ϕw

k (ln wjt−1, k jt, ωjt, δjt, Sjt) + εw
jt for t = 2, ..., T, (25)

mjt =
K

∑
k=0

bm
k ϕm

k (k jt, `jt, ωjt, δjt, Sjt) + εm
jt for t = 1, ..., T, (26)

k jt =
K

∑
k=0

bk
k ϕk

k(k jt−1, wjt−1, ωjt−1, δjt−1, Sjt−1) + εk
jt for t = 2, ..., T, (27)

19This is equivalent to modeling the conditional quantile function as

Qd(vz
jt, τ) =

K

∑
k=1

bz
k ϕz

k(v
z
jt) + bz

0(τ),

and choosing bz
0(τ) = bz + σzΦ−1(τ). This model differs from Equations (18), (19) and (20) in that

only the intercept depends on τ in a manner implied by the Normality assumption.
20As mentioned previously, we can classify workers into types (either by observables or unobserv-

ables) and model firm-level wages for each type of worker. Moreover, we would include different
labor types in the production function.
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for basis functions ϕw
k , ϕm

k , and ϕk
k. Moreover, I choose εw

jt ∼ N (0, σ2
w), εm

jt ∼
N (0, σ2

m), and εk
jt ∼ N (0, σ2

k ). To complete the model, we need to further specify
the initial distribution of wages conditional on capital and age at first observation,
as well as productivity, demand, and labor market advantages at first observation:

ln wj1 =
K

∑
k=0

bw1
k ϕw1

k (k j1, agej1, ωj1, δj1, Sj1) + εw1
j1 , (28)

where ϕw1
k are low-order products of Hermite polynomials, and εw1

j1 ∼ N (0, σ2
w1
).

4.2 Identification

Identification is challenging because productivity, demand, and labor market ad-
vantages are unobserved to the econometrician. Moreover, firm decisions are en-
dogenous to these unobservable components. The Markovian assumptions for the
states together with the fact that the production function, demand function, la-
bor supply function, and policy functions are static responses are the key building
blocks for identification. These assumptions allow us to implicitly use variables
from other periods as instrumental variables. The static nature of the response
functions justify the exclusion restrictions while the Markovian assumptions are
linked to instrument relevance.

In Appendix C, I discuss in detail identification in a simple linearized version
of the model. We use past outputs and choices as instruments in quasi-first-
differenced versions of the model. For instance, after differencing out the role
of past productivity in the production function, we can use past inputs as proxies
for demand shocks as instruments to identify the production function parameters.
Similarly, after appropriate transformations, we can use past prices and inputs as
instruments, proxying productivity shocks, to identify the demand elasticity. The
more general parametric model is identified under less tighter conditions.

Nonparametric identification would be important so that we are not dependent
on parametric assumptions. Nonparametric identification is plausible extending
arguments from Hu and Schennach (2008), Hu and Shum (2012), Arellano and
Bonhomme (2017) and Arellano et al. (2017) who establish conditions under which
dynamic nonlinear panel data models with latent variables are identified.21

21Nonparametric identification of the production function in a flexible semi-structural framework
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4.3 Estimation

The model is estimated separately by 2-digit sector. Results presented in the paper
are aggregated, weighted by sales, but some results of individual sectors are in the
appendix. In practice, there are likely aggregate effects which we are not able to
capture in the model. Thus, I work with residuals of all the variables of interest
after partialling-out sector-year fixed effects in a preliminary processing step.

Estimating all the parameters of the model jointly is challenging. As such, I
follow a two-stage estimation procedure where the demand elasticity in Equation
(13) is first estimated in a preliminary stage. The first-stage estimation is based on
a generalized method of moments (GMM) estimation allowing for the nonlinear
dynamics in the demand advantage process. I provide a more detailed discussion
in Appendix D.

The estimated demand elasticity is taken as given in the second stage where the
rest of the parameters are estimated. Following Arellano and Bonhomme (2016)
and Arellano et al. (2017), the second stage is based on a stochastic EM algorithm.
This algorithm alternates between two steps until convergence. In the first step, la-
tent variables (i.e., productivity, demand, and labor market advantages) are drawn
from their posterior distribution using Markov-Chain Monte Carlo (MCMC) tech-
niques. In the second step, the parameters of the model are updated taking as
given the latent draws. The second step is a series of linear quantile regressions,
least squares regressions, and nonlinear regressions. Alternating these two steps
produces a Markov chain of draws of the parameter estimates. The final parame-
ter estimates are computed as a mean of a number of realizations from this chain.
Details on the implementation of this stochastic EM algorithm are in Appendix E.

4.4 Model fit

In Appendix Figure F1, I plot the complete-data likelihood of over iterations of
the second-stage EM-based estimation. We see that despite only having a few it-
erations, the complete-data likelihood seems to have converged. In this section, I
discuss the estimates of the structural parameters: demand elasticities and produc-
tion function parameters. Then, I assess the fit of the model in its ability to match
cross-sectional and dynamic features of output and wages.

without demand or labor market advantages is discussed in Aguirre et al. (2021) and Doty (2022).
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In Appendix Figure F2, I report the estimated demand elasticity and corre-
sponding bootstrap distribution from the first-stage GMM estimation. I find point
estimates that are negative and slightly greater than one in absolute value. This
would suggest that the firms operate in the elastic portion of their demand curves.
In Appendix Table F1, I report the estimated production function parameters.
Moreover, I report the sum of the input elasticities and report it as a measure of
returns to scale. I find returns to scale measure close to one suggesting that firms
operate with constant returns to scale (at least locally) which is plausible given my
sample tends to lean towards larger firms. Moreover, the data is only available at
the firm-level and not at the establishment-level.

In Panels (a)–(c) of Appendix Figure F3, I plot the marginal distribution of
output in the data and based on the model. The differences in the marginal distri-
butions are imperceptible. Though we fit the cross-sectional distribution of output
well, we might be concerned that we do not fit the dynamics well. Thus, in Panels
(d)–(f) of the same figure, I plot the persistence in output in the data, based on a
flexible quantile specification of the dynamics, which we can compare to Panels (g)-
(i) which are corresponding persistence measures in output based on the model.
We find that the model is able to match the persistence patterns in output well.

In Panels (a)–(c) of Appendix Figure F4, I instead plot the the marginal distribu-
tion of wages from the data and the model. Comparing the two, we again find that
we fit the cross-sectional distribution of wages well. In Panels (d)–(f) and (g)–(i) of
the same figure, we plot the persistence of wages based on the data and the model,
respectively. The model has a lower level of persistence in wages, in general. How-
ever, we match well the general persistence patterns over initial wages and the size
of the shock.

5 Cross-sectional distribution and dynamics of produc-

tivity, demand, and labor market advantages

In this section, I document empirical facts on the cross-sectional distribution, dy-
namics, and joint distribution of productivity, demand advantages, and labor mar-
ket advantages.
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5.1 Cross-sectional heterogeneity

Figure 1: Cross-sectional distribution of productivity and demand advantages
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Notes: Panel (a) and (b) present estimates of the cross-sectional distributions of productivity and demand
advantages respectively. Also reported are the 10th, 50th, and 90th percentiles of the distributions. Dispersion
of the distributions measured as exp(P90− P10) also reported. Kernel densities estimated on data with top
and bottom 2% trimmed. Plots for individual sectors are presented in Appendix Figure G1. Percentiles
computed with full data. Distributions of individual sectors weighted by sector sales.

Productivity and demand advantages. Productivity differences among firms have
been extensively studied in the literature. Figure 1 shows estimates of the marginal
distributions of productivity and demand advantages. Both show substantial de-
viations from Gaussianity with negative skewness and fat tails. Focusing on pro-
ductivity in Panel (a), we find significant dispersion in productivity across firms—
given the same inputs, the firm at the 90th percentile produces about 8 times more
than the firm at the 10th percentile of the productivity distribution. Comparing this
to estimates in Hsieh and Klenow (2009), I find that the cross-sectional dispersion
of productivity in Portugal is smaller than that in the US, China, and India.22

On the other hand, focusing on Panel (b) which plots the density of demand
advantages, we similarly find economically significant heterogeneity across firms—
fixing prices, quantity demanded of the firm at the 90th percentile of the demand
advantage distribution is about 72 times that of the firm at the 10th percentile of

22Specifically, I compare it to their estimates of the cross-sectional dispersion in ln(TFPQ).
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the distribution. This magnitude may seem extremely large but firms at differ-
ent parts of the demand advantage distribution would optimally choose different
prices which will affect the actual distribution of quantity demanded.

Figure 2: Labor market advantages, labor supply elasticity, and implied static mark-
downs
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Labor elasticity

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D
e

n
s
it
y

 p10:0.3396

 p50:0.6396

 p90:1.2014

(c) Static markdowns
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Notes: Estimates of the marginal distributions of labor market advantages (Panel (a)), labor supply elasticities
(Panel (b)), and static markdowns (Panel (c)). Labor supply elasticites measured as the derivative of the labor
supply function in Equation (14) with respect to ln wjt. Static wage markdown measured as ε`w

jt /(1 + ε`w
jt )

where ε`w
jt is the labor supply elasticities of wages. They are interpreted as proportions of marginal revenue

product of labor paid to workers in the form of wages. Kernel densities estimated on data with top and bottom
2% trimmed. Percentiles computed with full data. Plots for individual sectors are presented in Appendix
Figure G2. Distributions of individual sectors weighted by sector sales.

Labor market advantages. In Panel (a) of Figure 2, we plot the estimated density
of labor market advantages. However, as labor market advantages Sjt enter the
residual labor supply function faced by the firm in a nonlinear manner, as in Equa-
tion (14), it requires a more nuanced interpretation. In the model, labor market
advantages may affect labor supply elasticities faced by firms. In Panel (b) of the
same figure, we find the marginal density of labor supply elasticities across firms.
We find that the distribution may be multi-modal owing to different industries be-
ing aggregated in the figure. Overall, we find that elasticities range between 0.34 at
the 10th percentile and 1.20 at the 90th percentile.

As firms face differing labor supply elasticities, they also differ in their labor
market power. In the absence of wage adjustment costs, firms pay wages that are
markdowns of marginal revenue product of labor (MRPL). The exact markdown is
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determined by the labor supply elasticity. In Panel (c) of Figure 2, we see the den-
sity of static markdowns. The median of the distribution is abour 0.39 suggesting
that the firm pays about 39% of MRPL. However, markdowns range between 0.25

to 0.54. In the presence of wage adjustment costs, as is the case in the framework,
markdowns are likely to be larger (paying more of MRPL) due to the costs to adjust
wages and its dynamic implications (Seegmiller, 2021).

Figure 3: Joint density of firm heterogeneity and shocks
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(b) (ωjt, Sjt)
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(c) (δjt, Sjt)
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(f) (Φ−1(υδ
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Notes: Panels (a)–(c) are contour plots of the estimated joint distributions of productivity and demand ad-
vantages, productivity and labor market advantages, and demand and labor market advantages, respectively.
Panels (d)–(f) are contours of the estimated copula densities of the shocks to productivity (υω

jt ), demand (υδ
jt),

and labor market advantages (υS
jt). As a graphical convention, I rescale the marginals of the shocks so they are

standard normal. Correlations also reported. Plots for individual sectors are presented in Appendix Figures
G3–G5. Distributions of individual sectors weighted by sector sales.

Joint distribution. In the model, we allow for correlation in the different dimen-
sions of firm heterogeneity. In Panels (a)–(c) of Figure 3, we plot the bivariate
joint densities of productivity, demand, and labor market advantages. We find no
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correlation between productivity and labor market advantages. There is positive
correlation between productivity and demand advantages, and an even stronger
positive correlation between demand and labor market advantages.

These correlations are partially explained by the correlation in the shocks as
defined in Equations (4)–(6). We estimate the univariate quantile processes from
simulations of the triangular model to back out shocks of the univariate processes.
In Panels (d)–(f) of Figure 3, we plot contour plots of the copula between these
shocks. The shocks to productivity and labor market advantages are not correlated.
However, we find strong correlation between productivity and demand shocks, as
well as demand and labor market advantage shocks.

5.2 Dynamics: Persistence and conditional distribution of shocks

This framework allows for rich dynamics for productivity, demand advantages, and
labor market advantages. Consider the univariate quantile models we described in
Equations (4)–(6). For τ ∈ (0, 1) and z ∈ {ω, δ, S},

ρ(zjt−1, τ) =
∂Qz(zjt−1, τ)

∂z
(29)

is a measure of the persistence of histories—it measures the persistence of zit−1

when it is hit by a shock of rank τ. Low persistence for a particular type of
shock would suggest that shock is able to wipe out the memory of past shocks.
In canonical models where productivity is modeled as a linear AR(1) process, then
ρ(zit−1, τ) is constant—that is, it does not depend on zit−1 nor τ— and is equal to
the autoregressive parameter.

As the model does not restrict the conditional distribution of zit given zit−1,
it allows for arbitrary conditional heteroskedasticity and skewness. That is, the
dispersion and asymmetry of the distribution of shocks may depend on the pre-
vious level of productivity, demand, or labor market advantages. The following
quantities

σz(zjt−1) =Qz(zjt−1, 0.9)−Qz(zjt−1, 0.1) (30)

skewz(zjt−1) =

[
Qz(zjt−1, 0.9)−Qz(zjt−1, 0.5)

]
−
[
Qz(zjt−1, 0.5)−Qz(zjt−1, 0.1)

]
Qz(zjt−1, 0.9)−Qz(zjt−1, 0.1)

(31)
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are quantile-based measures of the conditional dispersion and conditional skew-
ness of zit given zit−1, respectively. As we condition on the past level zit−1, we can
interpret features of this conditional distribution as the distribution of a “shock".
Intuitively, the conditional dispersion of zit given zit−1 captures how much uncer-
tainty there is the stochastic process. Allowing this to differ based on zit−1 would
suggest that firms in different parts of the distribution may face different levels
of uncertainty about the future. On the other hand, conditional skewness is a
measure of asymmetry. The measure compares how much of overall dispersion
(P90− P10) is in the right tail (P90− P50) compared to the left tail (P50− P10). If
the skewness measure is negative, it would suggest that bad shocks could be worse
in magnitude than good shocks. Thus, non-constant conditional skewness would
suggest the asymmetry of shocks depend on where a firm is on the overall distri-
bution. In the canonical AR(1) model usually employed for firm dynamics (i.e.,
with Gaussian innovations), the distribution of shocks are Normally distributed
with constant variance. Conditional dispersion would be constant and conditional
skewness is zero—that is, uncertainty is constant across all firms and that there are
no asymmetry in the magnitude of shocks.

Nonlinear persistence. In Panels (a)–(c) of Figure 4, I plot the persistence of
productivity, demand, and labor market advantages, respectively, as measured in
Equation (29). These graphs show the persistence as they vary over the level of
productivity, demand, or labor market advantage (measured as percentiles relative
to sector distributions, τinit) and the size of the shock (also measured as percentiles,
τshock). First, we notice that the surfaces are not flat and constant which would
suggest that persistence depends not only on the level of productivity, demand,
and labor market advantages but also on the size and direction of the shock. This
is a deviation from the canonical AR(1) model where persistence is constant re-
gardless of the past and of the size and direction of the shock. Second, we notice
that the persistence of productivity is generally lower than that of demand or la-
bor market advantages. Lastly, the shape of the surface would suggest that large
positive shocks tend to erase the history of bad firms (measured by their position
in the distribution). This would suggest, for instance, that there are shocks that
push historically low productivity firms to higher productivity states in the future.
We can imagine, as an example, a firm hiring a new manager who revamps the
production process to be more efficient.
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Figure 4: Dynamics of productivity, demand, and labor market advantages
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(b) Conditional persistence in
demand advantages
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(c) Conditional persistence in
labor market advantages
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(d) Conditional dispersion of
productivity
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(e) Conditional dispersion of
demand advantages
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(f) Conditional dispersion of
labor market advantages
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(g) Conditional skeweness of
productivity
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(h) Conditional skewness of
demand advantages
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(i) Conditional skewness of la-
bor market advantages
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Notes: Panels (a)–(c) are estimates of the persistence of productivity, demand, and labor market advantages,
respectively, conditional on the percentile of the past state (τinit) and percentile of the shock (τshock). They
are obtained as estimates of the average derivative of the conditional quantile function of the state zjt given
the previous state zjt−1 with respect to zjt−1. Panels (d)–(f) present estimates of the conditional dispersion of
the states given past states measured as the P90− P10 of the predictive distribution. Panel (g)–(j) present
estimates of the conditional skewness of the states given past states measured as (P90−P50)−(P50−P10)

P90−p10 of the
predictive distribution. Plots for individual sectors are presented in Appendix Figures G6–G8. Distributions
of individual sectors weighted by sector sales.
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Previous work using alternative datasets have found the same patterns for pro-
ductivity. We find the same patterns in Portuguese data. However, we show that
demand and labor market advantages follow similar dynamics.

Conditional distributions. Our models allow for the conditional distribution of
future productivity, demand, or labor market advantages given their corresponding
levels unrestricted. Looking at this conditional distribution gives us an idea of the
distribution of shocks, and consequently, of uncertainty. In Panels (d)–(f) of Figure
4, I plot the conditional dispersion of firm heterogeneity conditional on its past.
In general, we find that the conditional dispersion of firm heterogeneity decreases
as you go up the distribution. This suggests that, for instance, firms at the top of
the productivity distribution have less uncertainty about future productivity than
firms at the bottom of the distribution.

Dispersion does not tell the full story—firms also care about whether the un-
certainty might be in their favor or not. In Panels (g)–(i) of Figure 4, I plot the
conditional skewness of the distribution that speaks towards the asymmetry of
shocks. We see a common picture: at the lower end of the distribution, there is
positive skewness whereas there is negative skewness at the top of the distribu-
tion. This gives us a more full picture of the uncertainty faced by firms. Speaking
more loosely, focusing again on productivity, the conditional dispersion result tells
us that firms at the lower end of the productivity tend to have higher uncertainty,
in general; however, the conditional skewness results tell us that this increased
uncertainty is skewed towards positive deviations. Firms at the lower end of the
productivity distribution have can expect future outcomes to be from a wider range
of values but what the range of good shocks are large than the range of bad ones.
On the other end of the distribution, firms with high productivity have less un-
certainty about future outcomes but bad shocks tend to be worse than what they
stand to benefit from good shocks.

Combining these results with the results on conditional persistence, it would
seem that firms at the bottom of the distribution has more room to improve than
to fall while the firms at the top of the distribution have more room to fall and less
room to move up. This result may seems obvious but it is important to reiterate
that the standard AR(1) model used to describe dynamics do not allow for this
and instead paint a very different picture of uncertainty where all firms have the
equal change of moving up or falling.
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6 Wage dynamics: adjustment costs and pass-through

of shocks

Figure 5: Autocorrelation in wages
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Notes: Marginal distribution of the derivative of the wage-setting equation given past log-wages ln wjt−1 and
other state variables (capital k jt, productivity ωjt, demand δjt, and labor market advantages Sjt) with respect
to ln wjt−1. Kernel densities estimated on data with top and bottom 2% trimmed. Percentiles computed with
full data. Plots for individual sectors are presented in Appendix Figure G9. Distributions of individual sectors
weighted by sector sales.

Wage persistence and adjustment costs. In the absence of adjustment costs, wages
should be exactly determined by capital, productivity, demand advantages, and
labor market advantages. Past realizations of wages should be independent of
current wages conditional on the state variables. Thus, any remaining autocorre-
lation in wages after controlling for the state variables would suggest the presence
of wage adjustment costs. In Figure 5, I plot the empirical density of the deriva-
tive of the wage equation in Equation (7) with respect to lagged wages. We find
that the remaining autocorrelation in wages after controlling for the state vari-
ables of the firm varies between 0.09 to 0.19 and has a long right tail. At the
median, it is about 0.14 which is slightly smaller compared to the estimates ob-
tained by Carneiro et al. (2022) in a worker-level regression of wages on its lag,
controlling for time-invariant worker, employer, and match fixed effects using the
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same matched employer-employee dataset used in this paper.23 The role played
by lagged wages in the wage-setting decision of the firm would suggest the pres-
ence of economically-relevant wage adjustment costs that have implications on the
pass-through of firm shocks to wages.

Table 1: Wage pass-through of productivity and demand shocks

Labor Market Advantage

Overall p10 p50 p90

(1) (2) (3) (4)

Productivity shock p90 −0.0023 −0.0072 −0.0021 0.0000

Productivity shock p10 −0.0027 −0.0076 −0.0021 0.0001

Demand shock p90 0.0149 −0.0002 0.0191 0.0117

Demand shock p10 0.0210 0.0230 0.0233 0.0233

Notes: Median estimates of wage pass-through elasticities. P90 and P10 are interpreted as good and bad
shocks, respectively. Columns (2)–(4) report the conditional medians given position in the labor market
advantage distribution. Based on distributions of individual sectors weighted by sector sales.

Wage pass-through of productivity and demand shocks. We are interested in
measuring the pass-through of productivity and demand shocks onto wages and
how labor market advantages mediate this. With the framework we have built,
we are able to measure the pass-through of positive and negative shocks sepa-
rately to see whether there is symmetry in the pass-through. To measure wage
pass-through, suppose of a positive productivity shock, we consider the following
thought exercise: for each firm, we consider a scenario where that firm receives a
positive shock (quantified as a shock at the 90th percentile) and compare it to the
scenario where the same firm receives a neutral shock (a shock at the median). We
compare the change in wages and scale it by the change in productivity to obtain

23In their most demanding specification that includes match effects, Carneiro et al. (2022) report
an autocorrelation of arount 0.22 (and around 0.29 after bias-correction). Using survey data in the
US (PSID), Hospido (2015) estimates the autocorrelation in wages after controlling for individual
and job fixed heterogeneity and finds a coefficient of around 0.07. A notable difference between
my exercise and theirs is that they focus on worker-level autocorrelation in wages while I focus
on the autocorrelation in average firm-level wages controlling for composition. As such, it is more
comparable to the exercise by Hospido (2015) where they condition on job stayers and find an
autocorrelation of about 0.09.
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a measure that is an elasticity. Mathematically, it is the following quantity:

PTjt(0.9) =
ln Qw(wjt−1, Kjt, Qω(ωt−1, 0.9), δjt, Sjt)− ln Qw(wjt−1, Kjt, Qω(ωt−1, 0.5), δjt, Sjt)

Qω(ωt−1, 0.9)−Qω(ωt−1, 0.5)
(32)

Similar quantities can be defined with a negative productivity shock, and for de-
mand shocks. The marginal distribution of this object is interesting as it tell us
about wage pass-through in general. However, we can also look at this pass-
through conditioning on firm characteristics.

In Table 1, I report median wage pass-through estimates for good and bad pro-
ductivity and demand shocks. Focusing on Column (1), I highlight three things.
First, the pass-through estimates for demand shocks are larger than the pass-
through of productivity shocks. In fact, the magnitude of pass-through for pro-
ductivity shocks is close to zero and is economically insignificant. The difference
in the persistence of productivity from that of demand partially accounts for this
difference in pass-through. As mentioned, demand shocks are more persistent so
we would expect them to be passed onto workers more. The second thing I want
to highlight is that there is suggestion of asymmetry between the pass-through of
good and bad demand shocks. Based on the point estimates, the pass-through of
bad demand shocks is larger than the pass-through of good demand shocks. How-
ever, we do not have confidence intervals to assess the statistical significance of this
difference.24 Lastly, I want to comment on the magnitude of the pass-through elas-
ticities. The estimates of the pass-through elasticities for demand shocks are smaller
than the estimates obtained for the pass-through of revenue or value-added shocks,
for instance, found by Guiso et al. (2005) and Cardoso and Portela (2009).

In Columns (2)–(4) of Table 1, I examine the heterogeneity of the wage pass-
through elasticity with respect to labor market advantages, looking at firms at the
10th percentile of the labor market advantage distribution, at the median, and at
the 90th percentile. Consistent with the results without heterogeneity, I do not find
quantitatively significant wage pass-through of productivity shocks. The wage
pass-through elasticities of bad demand shocks appear to be constant across the
distribution of labor market advantages. On the other hand, I find that the pass-
through of good demand shocks depend on the level of labor market advantages:

24Under correct specification, nonparametric and parametric block-boostrap confidence intervals
will have asymptotic validity with fixed T. This is a computationally-intensive exercise and are not
yet reported in the current version of this paper.
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firms which have larger labor market advantages tend to have larger wage pass-
through elasticities of good demand shocks.

7 Conclusion

In this paper, I build and estimate an empirical framework of firms and workers in
imperfectly competitive output and labor markets to measure the pass-through of
productivity and demand shocks to wages. This leverages a unique data from Por-
tugal that combines matched employer-employee data, financial statements data,
and a manufacturing survey. The productivity, demand, and labor market advan-
tages of firms are inferred from the observed data. Matched employee-employer
data provides us information to control for worker heterogeneity in within-firm
wages. On the other hand, the separate price and quantity data allows us to sepa-
rate productivity from demand shocks.

I find substantial cross-sectional heterogeneity in productivity, demand, and
labor market advantages. Productivity and demand advantages are positively cor-
related and so are demand and labor market advantages. These joint correlations
are partially explained by the correlation in shocks as well as the correlation in
initial conditions. The three features of the firm evolve in rich, nonlinear ways. In
particular, there are positive shocks to poor-performing firms that reduce the per-
sistence of its past states. The predictive distribution of states also depend on the
current state. Firms at the bottom of the distribution of states face more uncertainty
that tends to be positively skewed. These features of the dynamics of productivity,
demand, and labor market advantages have implications on many firm decisions.

I measure the pass-through of productivity and demand shocks to wages. I find
that the pass-through of productivity and demand shocks are asymmetric—I find
a positive pass-through of demand shocks but no pass-through of productivity
shocks, after accounting for wage adjustment costs. Moreover, I find suggestive
evidence that the pass-through of bad demand shocks are larger than the pass-
through of good demand shocks. The wage pass-through elasticities of demand
shocks I estimate are smaller compared to the estimates of the pass-through of
revenue or value-added shocks. The wage pass-through of good demand shocks
depend on the firm’s position in the labor market. Firms which have higher labor
market advantages—i.e., firms more attractive to workers conditional on wages—
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have higher pass-through elasticities of good demand shocks than firms are the
bottom of the labor market advantage distribution. I do not find this difference in
the pass-through of bad demand shocks. This suggests interactions between firms’
output and labor market power.

The framework in this paper can be extended and applied to study other topics
of interest in firm dynamics and labor economics. For instance, we might be inter-
ested in whether the pass-through of wages differ across workers within the same
firm. As previously discussed, the framework can be easily extended if we are
interested in differences of pass-through across observable heterogeneity across
workers (e.g., by educational attainment of workers or gender). Another excit-
ing avenue for further research is endogenizing productivity, demand, and labor
market advantages to study how firm-level shocks affect decisions of investing in
innovation research, advertising, and amenities.

38



References

Abowd, John A. and Thomas Lemieux (1993) “The Effects of Product Market Com-
petition on Collective Bargaining Agreements: The Case of Foreign Competi-
tion in Canada,” The Quarterly Journal of Economics, 108 (4), 983–1014, http:

//www.jstor.org/stable/2118457. (cited in page 6)

Abowd, John M., Francis Kramarz, and David N. Margolis (1999) “High Wage
Workers and High Wage Firms,” Econometrica, 67 (2), 251–333, https://doi.org/
10.1111/1468-0262.00020. (cited in page 1)

Ackerberg, Daniel (2020) “Timing Assumptions and Efficiency: Empirical Evidence
in a Production Function Context,” Working Paper. (cited in page 8)

Ackerberg, Daniel A., Kevin Caves, and Garth Frazer (2015) “Identification Proper-
ties of Recent Production Function Estimators,” Econometrica, 83 (6), 2411–2451,
10.3982/ECTA13408. (cited in page 6, 8, 19)

Adamopoulou, Effrosyni and Ernesto Villanueva (2022) “Wage determination and
the bite of collective contracts in Italy and Spain,” Labour Economics, 76, 102147,
https://doi.org/10.1016/j.labeco.2022.102147. (cited in page 12)

Aguirre, Alvaro, Matias Tapia, and Lucciano Villacorta (2021) “Production, Invest-
ment and Wealth Dynamics Under Financial Frictions: An Empirical Investiga-
tion of the Self-Financing Channel,” Working Paper. (cited in page 9, 25)

Amemiya, Takeshi (1977) “The Maximum Likelihood and the Nonlinear Three-
Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation
Model,” Econometrica, 45 (4), 955–968, http://www.jstor.org/stable/1912684.
(cited in page A14)

Arellano, Manuel, Richard Blundell, and Stéphane Bonhomme (2017) “Earnings
and Consumption Dynamics: A Nonlinear Panel Data Framework,” Economet-
rica, 85 (3), 693–734, 10.3982/ECTA13795. (cited in page 3, 8, 20, 21, 22, 24, 25,
A16, A17)

Arellano, Manuel and Stephen Bond (1991) “Some Tests of Specification for Panel
Data: Monte Carlo Evidence and an Application to Employment Equations,” The
Review of Economic Studies, 58 (2), 277–297, 10.2307/2297968. (cited in page 8)

Arellano, Manuel and Stéphane Bonhomme (2016) “Nonlinear panel data esti-
mation via quantile regressions,” The Econometrics Journal, 19 (3), C61–C94,
10.1111/ectj.12062. (cited in page 8, 22, 25, A15, A16)

(2017) “Nonlinear Panel Data Methods for Dynamic Heterogeneous
Agent Models,” Annual Review of Economics, 9 (1), 471–496, 10.1146/
annurev-economics-063016-104346. (cited in page 8, 24)

39

http://www.jstor.org/stable/2118457
http://www.jstor.org/stable/2118457
http://dx.doi.org/https://doi.org/10.1111/1468-0262.00020
http://dx.doi.org/https://doi.org/10.1111/1468-0262.00020
http://dx.doi.org/10.3982/ECTA13408
http://dx.doi.org/10.3982/ECTA13408
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2022.102147
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2022.102147
http://www.jstor.org/stable/1912684
http://dx.doi.org/10.3982/ECTA13795
http://dx.doi.org/10.2307/2297968
http://dx.doi.org/10.1111/ectj.12062
http://dx.doi.org/10.1111/ectj.12062
http://dx.doi.org/10.1146/annurev-economics-063016-104346
http://dx.doi.org/10.1146/annurev-economics-063016-104346


Blundell, Richard and Stephen Bond (1998) “Initial conditions and moment restric-
tions in dynamic panel data models,” Journal of Econometrics, 87 (1), 115 – 143,
https://doi.org/10.1016/S0304-4076(98)00009-8. (cited in page 8)

(2000) “GMM Estimation with persistent panel data: an application
to production functions,” Econometric Reviews, 19 (3), 321–340, 10.1080/
07474930008800475. (cited in page 8)

Blundell, Richard, Luigi Pistaferri, and Ian Preston (2008) “Consumption Inequality
and Partial Insurance,” American Economic Review, 98 (5), 1887–1921, 10.1257/aer.
98.5.1887. (cited in page 9)

Bond, Steve, Arshia Hashemi, Greg Kaplan, and Piotr Zoch (2021) “Some Unpleas-
ant Markup Arithmetic: Production Function Elasticities and their Estimation
from Production Data,” Journal of Monetary Economics, https://doi.org/10.1016/
j.jmoneco.2021.05.004. (cited in page 7)

Bover, Olympia, Pilar García-Perea, and Pedro Portugal (2000) “Labour market
outliers: Lessons from Portugal and Spain,” Economic Policy, 15 (31), 380–428,
10.1111/1468-0327.00065. (cited in page 12)

Bronnenberg, Bart J., Sanjay K. Dhar, and Jean-Pierre H. Dubé (2007) “Consumer
Packaged Goods in the United States: National Brands, Local Branding,” Journal
of Marketing Research, 44 (1), 4–13, 10.1509/jmkr.44.1.004. (cited in page 15)

(2009) “Brand History, Geography, and the Persistence of Brand Shares,”
Journal of Political Economy, 117 (1), 87–115, 10.1086/597301. (cited in page 15)

de Burton, Simon (2021) “The enduring appeal of the
Vespa,” The Spectator, https://www.spectator.co.uk/article/

75-years-on-the-vespa-is-still-going-strong. (cited in page 15)

Caliendo, Lorenzo, Giordano Mion, Luca David Opromolla, and Esteban Rossi-
Hansberg (2020) “Productivity and Organization in Portuguese Firms,” Journal
of Political Economy, 128 (11), 4211–4257, 10.1086/710533. (cited in page 10)

Card, David and Ana Rute Cardoso (2021) “Wage flexibility under sectoral bargain-
ing,” Working Paper. (cited in page 12)

Card, David, Ana Rute Cardoso, Joerg Heining, and Patrick Kline (2018) “Firms
and Labor Market Inequality: Evidence and Some Theory,” Journal of Labor Eco-
nomics, 36 (S1), S13–S70, 10.1086/694153. (cited in page 3, 16)

Cardoso, Ana Rute and Miguel Portela (2009) “Micro Foundations for Wage Flexi-
bility: Wage Insurance at the Firm Level,” The Scandinavian Journal of Economics,
111 (1), 29–50, 10.1111/j.1467-9442.2008.01553.x. (cited in page 4, 5, 10, 36)

40

http://dx.doi.org/https://doi.org/10.1016/S0304-4076(98)00009-8
http://dx.doi.org/https://doi.org/10.1016/S0304-4076(98)00009-8
http://dx.doi.org/10.1080/07474930008800475
http://dx.doi.org/10.1080/07474930008800475
http://dx.doi.org/10.1257/aer.98.5.1887
http://dx.doi.org/10.1257/aer.98.5.1887
http://dx.doi.org/https://doi.org/10.1016/j.jmoneco.2021.05.004
http://dx.doi.org/https://doi.org/10.1016/j.jmoneco.2021.05.004
http://dx.doi.org/10.1111/1468-0327.00065
http://dx.doi.org/10.1111/1468-0327.00065
http://dx.doi.org/10.1509/jmkr.44.1.004
http://dx.doi.org/10.1086/597301
https://www.spectator.co.uk/article/75-years-on-the-vespa-is-still-going-strong
https://www.spectator.co.uk/article/75-years-on-the-vespa-is-still-going-strong
http://dx.doi.org/10.1086/710533
http://dx.doi.org/10.1086/694153
http://dx.doi.org/10.1111/j.1467-9442.2008.01553.x


Cardoso, Ana Rute and Pedro Portugal (2005) “Contractual Wages and the Wage
Cushion under Different Bargaining Settings,” Journal of Labor Economics, 23 (4),
875–902, 10.1086/491608. (cited in page 12)

Carlsson, Mikael, Julián Messina, and Oskar Nordström Skans (2020) “Firm-Level
Shocks and Labour Flows,” The Economic Journal, 131 (634), 598–623, 10.1093/ej/
ueaa087. (cited in page 7)

Carlsson, Mikael, Julián Messina, and Oskar Nordström Skans (2016) “Wage Ad-
justment and Productivity Shocks,” The Economic Journal, 126 (595), 1739–1773,
10.1111/ecoj.12214. (cited in page 7)

Carneiro, Anabela, Pedro Portugal, Pedro Raposo, and Paulo M.M. Rodrigues
(2022) “The persistence of wages,” Journal of Econometrics, https://doi.org/10.
1016/j.jeconom.2021.11.014. (cited in page 34, 35)

Chan, Mons, Sergio Salgado, and Ming Xu (2019) “Heterogeneous Passthrough
from TFP to Wages,” Working Paper. (cited in page 1, 6, 14)

Cho, David (2018) “The Labor Market Effects of Demand Shocks: Firm-Level Evi-
dence from the Recovery Act,” Working Paper. (cited in page 6)

De Loecker, Jan and Chad Syverson (2021) “An Industrial Organization Perspective
on Productivity,” Working Paper. (cited in page 6)

De Loecker, Jan and Frederic Warzynski (2012) “Markups and Firm-Level Ex-
port Status,” American Economic Review, 102 (6), 2437–71, 10.1257/aer.102.6.2437.
(cited in page 7)

Demirer, Mert (2019) “Production Function Estimation with Factor-Augmenting
Technology: An Application to Markups,” Working Paper. (cited in page 14)

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977) “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), 39 (1), 1–38, http://www.jstor.org/stable/2984875.
(cited in page A16)

Doraszelski, Ulrich and Jordi Jaumandreu (2018) “Measuring the Bias of Techno-
logical Change,” Journal of Political Economy, 126 (3), 1027–1084, 10.1086/697204.
(cited in page 14)

Doty, Justin (2022) “A Dynamic Framework for Identification and Estimation of
Nonseparable Production Functions,” Working Paper. (cited in page 25)

Eslava, Marcela, John Haltiwanger, Adriana Kugler, and Maurice Kugler (2004)
“The effects of structural reforms on productivity and profitability enhancing
reallocation: evidence from Colombia,” Journal of Development Economics, 75 (2),

41

http://dx.doi.org/10.1086/491608
http://dx.doi.org/10.1093/ej/ueaa087
http://dx.doi.org/10.1093/ej/ueaa087
http://dx.doi.org/10.1111/ecoj.12214
http://dx.doi.org/10.1111/ecoj.12214
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2021.11.014
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2021.11.014
http://dx.doi.org/10.1257/aer.102.6.2437
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1086/697204


333 – 371, https://doi.org/10.1016/j.jdeveco.2004.06.002, 15th Inter American
Seminar on Economics. (cited in page 7)

Foster, Lucia, John Haltiwanger, and Chad Syverson (2008) “Reallocation, Firm
Turnover, and Efficiency: Selection on Productivity or Profitability?” American
Economic Review, 98 (1), 394–425, 10.1257/aer.98.1.394. (cited in page 7, 13)

Friedrich, Benjamin, Lisa Laun, Costas Meghir, and Luigi Pistaferri (2019) “Earn-
ings Dynamics and Firm-Level Shocks,” Working Paper. (cited in page 6)

Gálvez, Julio (2017) “Household portfolio choices and nonlinear income risk,”
Working Paper. (cited in page 9)

Gandhi, Amit, Salvador Navarro, and David A. Rivers (2020) “On the Identification
of Gross Output Production Functions,” Journal of Political Economy, 128 (8), 2973–
3016, 10.1086/707736. (cited in page 8, A8)

Garin, Andrew and Felipe Silverio (2018) “How Responsive are Wages to Demand
within the Firm? Evidence from Idiosyncratic Export Demand Shocks,” Working
Paper. (cited in page 1, 6)

Goldberg, Pinelopi Koujianou (1995) “Product Differentiation and Oligopoly in In-
ternational Markets: The Case of the U.S. Automobile Industry,” Econometrica, 63

(4), 891–951, http://www.jstor.org/stable/2171803. (cited in page 15)

Guadalupe, Maria (2007) “Product Market Competition, Returns to Skill, and Wage
Inequality,” Journal of Labor Economics, 25 (3), 439–474, 10.1086/513299. (cited in
page 6)

Guertzgen, N. (2014) “Wage insurance within German firms: do institutions mat-
ter?” Journal of the Royal Statistical Society: Series A (Statistics in Society), 177 (2),
345–369, 10.1111/rssa.12019. (cited in page 5)

Guillard, Charlotte, Jordi Jaumandreu, and Jocelyn Olivari (2018) “Endogenous
Productivity and Unobserved Prices,” Working Paper. (cited in page 7)

Guiso, Luigi, Luigi Pistaferri, and Fabiano Schivardi (2005) “Insurance within the
Firm,” Journal of Political Economy, 113 (5), 1054–1087, 10.1086/432136. (cited in
page 1, 4, 5, 6, 10, 36)

Heckman, James J. and Guilherme Sedlacek (1985) “Heterogeneity, Aggregation,
and Market Wage Functions: An Empirical Model of Self-Selection in the Labor
Market,” Journal of Political Economy, 93 (6), 1077–1125, 10.1086/261352. (cited
in page 18)

Hospido, Laura (2015) “Wage dynamics in the presence of unobserved individual
and job heterogeneity,” Labour Economics, 33, 81–93, https://doi.org/10.1016/j.
labeco.2015.03.012. (cited in page 35)

42

http://dx.doi.org/https://doi.org/10.1016/j.jdeveco.2004.06.002
http://dx.doi.org/10.1257/aer.98.1.394
http://dx.doi.org/10.1086/707736
http://www.jstor.org/stable/2171803
http://dx.doi.org/10.1086/513299
http://dx.doi.org/10.1111/rssa.12019
http://dx.doi.org/10.1086/432136
http://dx.doi.org/10.1086/261352
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2015.03.012
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2015.03.012


Hotelling, Harold (1929) “Stability in Competition,” The Economic Journal, 39 (153),
41–57, http://www.jstor.org/stable/2224214. (cited in page 15)

Hsieh, Chang-Tai and Peter J. Klenow (2009) “Misallocation and Manufacturing
TFP in China and India,” The Quarterly Journal of Economics, 124 (4), 1403–1448,
10.1162/qjec.2009.124.4.1403. (cited in page 27)

Hu, Yingyao and Susanne M. Schennach (2008) “Instrumental Variable Treatment
of Nonclassical Measurement Error Models,” Econometrica, 76 (1), 195–216, https:
//doi.org/10.1111/j.0012-9682.2008.00823.x. (cited in page 8, 24)

Hu, Yingyao and Matthew Shum (2012) “Nonparametric identification of dynamic
models with unobserved state variables,” Journal of Econometrics, 171 (1), 32–44,
https://doi.org/10.1016/j.jeconom.2012.05.023. (cited in page 24)

Jaumandreu, Jordi and Heng Yin (2019) “Cost and Product Advantages: Evidence
from Chinese Manufacturing Firms,” Working Paper. (cited in page 7, 8, 20)

Juhn, Chinhui, Kristin McCue, Holly Monti, and Brooks Pierce (2018) “Firm Per-
formance and the Volatility of Worker Earnings,” Journal of Labor Economics, 36

(S1), S99–S131, 10.1086/694167. (cited in page 5)

Kátay, Gábor (2016) “Do Firms Provide Wage Insurance against Shocks?” The Scan-
dinavian Journal of Economics, 118 (1), 105–128, 10.1111/sjoe.12128. (cited in page
1, 6)

Klette, Tor Jakob and Zvi Griliches (1996) “The inconsistency of common scale es-
timators when output prices are unobserved and endogenous,” Journal of Ap-
plied Econometrics, 11 (4), 343–361, 10.1002/(SICI)1099-1255(199607)11:4<343::
AID-JAE404>3.0.CO;2-4. (cited in page 6)

Kumar, Pradeep and Hongsong Zhang (2019) “Productivity or Demand Shocks:
What Determines Firms’ Investment and Exit Decisions?” International Economic
Review, 60 (1), 303–327, 10.1111/iere.12354. (cited in page 7)

Lamadon, Thibaut (2016) “Productivity Shocks, Long-Term Contracts and Earnings
Dynamics,” Working Paper. (cited in page 1, 6)

Lamadon, Thibaut, Magne Mogstad, and Bradley Setzler (2019) “Imperfect Com-
petition, Compensating Differentials and Rent Sharing in the US Labor Market,”
Working Paper. (cited in page 6, 16)

Levinsohn, James and Amil Petrin (2003) “Estimating Production Functions Using
Inputs to Control for Unobservables,” The Review of Economic Studies, 70 (2), 317–
341, 10.1111/1467-937X.00246. (cited in page 6, 8, 19)

43

http://www.jstor.org/stable/2224214
http://dx.doi.org/10.1162/qjec.2009.124.4.1403
http://dx.doi.org/10.1162/qjec.2009.124.4.1403
http://dx.doi.org/https://doi.org/10.1111/j.0012-9682.2008.00823.x
http://dx.doi.org/https://doi.org/10.1111/j.0012-9682.2008.00823.x
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2012.05.023
http://dx.doi.org/https://doi.org/10.1016/j.jeconom.2012.05.023
http://dx.doi.org/10.1086/694167
http://dx.doi.org/10.1111/sjoe.12128
http://dx.doi.org/10.1002/(SICI)1099-1255(199607)11:4<343::AID-JAE404>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1099-1255(199607)11:4<343::AID-JAE404>3.0.CO;2-4
http://dx.doi.org/10.1111/iere.12354
http://dx.doi.org/10.1111/1467-937X.00246


Lucas, Robert E, Jr. (1976) “Econometric policy evaluation: A critique,” in Carnegie-
Rochester conference series on public policy, 1, 19–46, North-Holland. (cited in page
13)

Marques, Carlos, Fernando Martins, and Pedro Portugal (2010) “Price and wage
formation in Portugal,”Technical report, European Central Bank. (cited in page
18)

Miller, Nathan H. and Matthew Osborne (2014) “Spatial differentiation and price
discrimination in the cement industry: evidence from a structural model,” The
RAND Journal of Economics, 45 (2), 221–247, http://www.jstor.org/stable/

43186456. (cited in page 15)

Nevo, Aviv (2001) “Measuring Market Power in the Ready-to-Eat Cereal Industry,”
Econometrica, 69 (2), 307–342, https://doi.org/10.1111/1468-0262.00194. (cited
in page 15)

Olley, G. Steven and Ariel Pakes (1996) “The Dynamics of Productivity in the
Telecommunications Equipment Industry,” Econometrica, 64 (6), 1263–1297, http:
//www.jstor.org/stable/2171831. (cited in page 5, 6, 8, 13, A6)

Pozzi, Andrea and Fabiano Schivardi (2016) “Demand or productivity: what
determines firm growth?” The RAND Journal of Economics, 47 (3), 608–630,
10.1111/1756-2171.12142. (cited in page 7)

Rubens, Michael (2021) “Market Structure, Oligopsony Power, and Productivity,”
Working Paper. (cited in page 7, 8)

Salgado, Sergio, Fatih Guvenen, and Nicholas Bloom (2020) “Skewed Business Cy-
cles,” Working Paper. (cited in page 16)

Seegmiller, Bryan (2021) “Valuing Labor Market Power: The Role of Productivity
Advantages,” Working Paper. (cited in page 29)

Smeets, Valerie and Frederic Warzynski (2013) “Estimating productivity with multi-
product firms, pricing heterogeneity and the role of international trade,” Journal
of International Economics, 90 (2), 237 – 244, https://doi.org/10.1016/j.jinteco.
2013.01.003. (cited in page 7)

Sockin, Jason (2022) “Show Me the Amenity: Are Higher-Paying Firms Better All
Around?”, Working Paper. (cited in page 16)

Sonnadara, Kanishka (2013) “Audrey Hepburn and the rise of
the Vespa,” Motocycle.com, https://www.motorcycle.com/how-to/

audrey-hepburn-and-the-rise-of-the-vespa. (cited in page 15)

44

http://www.jstor.org/stable/43186456
http://www.jstor.org/stable/43186456
http://dx.doi.org/https://doi.org/10.1111/1468-0262.00194
http://www.jstor.org/stable/2171831
http://www.jstor.org/stable/2171831
http://dx.doi.org/10.1111/1756-2171.12142
http://dx.doi.org/10.1111/1756-2171.12142
http://dx.doi.org/https://doi.org/10.1016/j.jinteco.2013.01.003
http://dx.doi.org/https://doi.org/10.1016/j.jinteco.2013.01.003
https://www.motorcycle.com/how-to/audrey-hepburn-and-the-rise-of-the-vespa
https://www.motorcycle.com/how-to/audrey-hepburn-and-the-rise-of-the-vespa


Sorkin, Isaac (2018) “Ranking Firms Using Revealed Preference,” The Quarterly Jour-
nal of Economics, 133 (3), 1331–1393, 10.1093/qje/qjy001. (cited in page 16)

Verhoogen, Eric A. (2008) “Trade, Quality Upgrading, and Wage Inequality in the
Mexican Manufacturing Sector,” The Quarterly Journal of Economics, 123 (2), 489–
530, 10.1162/qjec.2008.123.2.489. (cited in page 6)

45

http://dx.doi.org/10.1093/qje/qjy001
http://dx.doi.org/10.1162/qjec.2008.123.2.489


A Appendix: Computing real output and price indices

Computing constant 2018 prices. Products are identified by a code that combines
a code for the product (which coincides with the European PRODCOM codes),
a Portuguese-specific code that refines the PRODCOM classification, and a code
that indicates variants of the product. I compute an average annual price of each
product by taking a weighted average using quantity sold as weights. In the time
series of prices, I exclude prices that arise from extraordinary changes defined as
percentage increases of at least 300% or percentage decreases of at least 75%.

To compute constant prices, I take the most recent price for each product and
adjust it to 2018 prices. I prioritize adjustments based on similar products. For
instance, suppose the most recent price data for a particular product is 2016. Then,
I look at the price changes between 2016 and 2018 for similar products defined as
products with the same initial digits in their PRODCOM code. I take the average of
price changes of the products that are closest (most number of overlapping PROD-
COM digits) and adjust prices based on that. In the worst case where there are no
similar products with prices in the same year, I adjust based on inflation.

This fixed price is fixed not only in the cross-section but also in the time-series
dimension. That is, I fix this price for all firms over time. I define real output as
the quantities sold using these fixed prices to value them. Then, the price index is
the nominal total sales divided by the measured real output.

Table A1: Cross-sectional and time-series heterogeneity of defined quantities

t = 0 t = 1

One good
Nominal Y P1

j0Q1
j0 P1

j1Q1
j1

Real Y P1
0Q1

j0 P1
0Q1

j1

Price
P1

j0

P1
0

P1
j1

P1
0

Two goods
Nominal Y P1

j0Q1
j0 + P2

j0Q2
j0 P1

j1Q1
j1 + P2

j1Q2
j1

Real Y P1
0Q1

j0 + P2
0Q2

j0 P1
0Q1

j1 + P2
0Q2

j1

Price
P1

j0

P1
0

P1
0Q1

j0

P1
0Q1

j0+P2
0Q2

j0

+
P2

j0

P2
0

P2
0Q2

j0

P1
0Q1

j0+P2
0Q2

j0

P1
j1

P1
0

P1
0Q1

j1

P1
0Q1

j1+P2
0Q2

j1

+
P2

j1

P2
0

P2
0Q2

j1

P1
0Q1

j1+P2
0Q2

j1

Discussion. This particular method I propose preserves both the cross-sectional
and time-series variation in firm behavior. I illustrate this in Appendix Table A1 by

A1



considering a simple two-period economy with only one or two goods. Focusing
on the case with one good, what we would observe in the data is "Nominal Y"
which is the firm-specific total revenue which is a product of prices and quantities.
I choose a constant price P1

0 and use this to value the quantities produced and this is
"Real Y". The price index is then the ratio of the nominal output and the real output.
Notice that in this simple economy, if we focus on a particular time period, variation
in the "Real Y" across firms only comes from differences in quantity produced. On
the other hand, if we consider a particular firm and compare "Real Y" over time,
variation only comes from time-series differences in the quantities produced by
the firm. The same argument can be seen in the illustration with two goods and
extends to the realistic case with more goods.
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B Appendix: Joint dynamics of firm heterogeneity

Under the Markovian assumptions of the model, to specify the dynamics of the
latent firm heterogeneity, it is sufficient to specify the conditional density

f (ωjt, δjt, Sjt | ωjt−1, δjt−1, Sjt−1). (B1)

As discussed in Section 3, we allow for the shocks to productivity, demand, and
labor market advantages to be correlated and so we cannot simply decompose
the above conditional density as a product of the individual univariate conditional
densities f (ωjt | ωjt−1), f (δjt | δjt−1), and f (Sjt | Sjt−1). In this appendix, I dis-
cuss ways of modeling this dependence and, in particular, motivate the triangular
representation in Equations (15)–(17).

For conciseness, I will proceed with the discussion as if there were only two la-
tent variables, productivity (ωjt) and demand advantages (δjt), but it is conceptually
straightforward to extend the arguments for the case with more latent variables.
The conditional version of Sklar’s theorem with absolutely continuous marginals
implies

f (ωjt, δjt | ωjt−1, δjt−1) = f (ωjt | ωjt−1, δjt−1)× f (δjt | ωjt−1, δjt−1)

× c(F(ωjt|ωjt−1, δjt−1), F(δjt|ωjt−1, δjt−1) | ωjt−1, δjt−1)

(B2)

where c(·, · | ωjt−1, δjt−1) is the density of the bivariate conditional copula. Specifi-
cally, it tells us that the conditional bivariate density of (ωjt, δjt) given (ωjt−1, δjt−1)

can be decomposed into the univariate conditional densities and a copula that cap-
tures the dependence structure between the shocks to productivity and demand
advantages. Under the conditional independence assumptions of the model, we
have following simplifications:

• f (ωjt | ωjt−1, δjt−1) = f (ωjt | ωjt−1) and F(ωjt | ωjt−1, δjt−1) = F(ωjt | ωjt−1)

• f (δjt | ωjt−1, δjt−1) = f (δjt | δjt−1) and F(δjt | ωjt−1, δjt−1) = F(δjt | δjt−1)

• c(F(ωjt|ωjt−1, δjt−1), F(δjt|ωjt−1, δjt−1) | ωjt−1, δjt−1) = c(F(ωjt|ωjt−1), F(δjt|δjt−1))

where the last one follows from the assumption that the distribution of the shocks
to productivity and demand advantages are independent of the past realizations.
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Thus,

f (ωjt, δjt | ωjt−1, δjt−1) = f (ωjt | ωjt−1)× f (δjt | δjt−1)× c(F(ωjt|ωjt−1), F(δjt|δjt−1)).
(B3)

To implement this, we would need to specify the three components. As discussed
in Section 4.1, the first two could be flexibly specified using conditional quantile
functions. Thus, we would simply need to augment the model with a parametric
copula. This has a couple of drawbacks. First, we would need to select a partic-
ular parametric copula which may limit the dependence structures that could be
accommodated. Second, once we have selected a copula, this needs to be estimated
and the maximum likelihood step needed to estimate the copula parameters may
be computationally costly.

We can alternatively use a different decomposition of the conditional density:

f (ωjt, δjt | ωjt−1, δjt−1) = f (δjt | ωjt, ωjt−1, δjt−1)× f (ωjt | ωjt−1, δjt−1). (B4)

As above, we can simplify the second component, f (ωjt | ωjt−1, δjt−1) = f (ωjt |
ωjt−1). After this simplification, the model is still more flexible compared to the
model in Equation (B3). In particular, we have not imposed the assumption that
the distribution of shocks to productivity and demand advantages are independent
of past realization. In such a case,

f (δjt | ωjt, ωjt−1, δjt−1) = f (δjt | F(ωjt | ωjt−1), ωjt−1, δjt−1) = f (δjt | F(ωjt | ωjt−1), δjt−1)

(B5)
where the first equality follows without loss of generality. The second equality
is a simplification that intutitively tells us that past productivity does not carry
any additional information about current demand advantages after we control for
past demand advantages and the current productivity shock. If the dependence of
shocks depended on past realizations, then we cannot make the same simplifica-
tion. Thus,

f (ωjt, δjt | ωjt−1, δjt−1) = f (δjt | F(ωjt | ωjt−1), δjt−1)× f (ωjt | ωjt−1). (B6)

The main virtue of considering this particular decomposition is in implementation.
In particular, we do not need to specify a particular copula, which becomes even
more difficult with more than two variables. As such, we can accommodate ar-
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bitrary dependence in the shocks. Moreover, the two components can be easily
specified using conditional quantile functions which can be estimated through a
series of quantile regressions.

Future work would take advantage of the flexibility of this triangular structure.
In particular, by estimating models based on Equation (B4), we may allow for the
distribution of shocks to arbitrarily depend on past realizations.
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C Appendix: Identification in a simpler model

To provide intuition in the model, I consider a simplified model. The model will
be simplified along the following lines:

1. the dynamic processes of productivity, demand, and labor market advantages
will be linear AR(1) processes;

2. I remove capital as a relevant state variable; and

3. all structural equations and empirical policy functions are log-linear in their
arguments.

Simplifications (1) and (3) are restrictive but we might expect nonlinearities to make
identification easier by allowing us to exploit higher-order moments of the model.
Simplification (2) is simply for convenience. As capital is a dynamic input, it admits
natural instruments which we know from Olley and Pakes (1996), for instance.

Production function and productivity. I begin with a Cobb-Douglas production
function that only takes materials and labor as inputs. In logs, the production
function is

yjt = βmmjt + β``jt + ωjt + ε
y
jt, (C1)

and we assume that productivity ωjt follows a linear AR(1) process with autore-
gressive coefficient ρω. Then,

ωjt = ρωωjt−1 + ηω
jt , (C2)

where ηω
jt are the idiosyncratic innovations to productivity which we assume to be

serially uncorrelated and independent of the idiosyncratic shocks in other parts of
the model.

Taking the ρω-quasi-first-difference of Equation (C1) and using what we know
about the process of ωjt in Equation (C2), we have

yjt = ρωyjt−1 + βm(mjt − ρωmjt−1) + β`(`jt − ρω`jt−1) + (ηω
jt + ε

y
jt − ρωε

y
jt−1)︸ ︷︷ ︸

≡ε̃
y
jt

. (C3)

The OLS estimates of the above equation will lead to biased estimates because
of the endogeneity brought by the dynamic nature of the outcome variable. In
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particular, we have Cov
(

yjt−1, ε̃
y
jt

)
6= 0. Moreover, since materials and labor are

determined statically, they are correlated with the contemporaneous innovation in
productivity ηω

jt . Drawing insights from estimation with sequentially exogenous
regressors, the past realizations of the outcome {yjt−2, ...} are valid instruments. I
explore the conditions under which the past material inputs {mjt−1, mjt−2, ...} and
labor inputs {`jt−1, `jt−2, ...} are also valid instruments.

Consider linearized versions of Equations (10), (7) and (3), which are the mate-
rial demand, wage-setting, and labor supply equations, respectively.

mjt =h``jt + hωωjt + hδδjt + hSSjt + εm
jt (C4)

wjt =γwwjt−1 + γωωjt + γδδjt + γSSjt + εw
jt (C5)

`jt =θwwjt + Sjt + ε`jt (C6)

Moreover, we assume that the unobserved demand advantages (δjt) and labor mar-
ket advantages (Sjt) follow linear AR(1) processes with autoregressive coefficients
ρδ and ρS, respectively:

δjt =ρδδjt−1 + ηδ
jt (C7)

Sjt =ρSSjt−1 + ηS
jt (C8)

where ηδ
jt and ηS

jt are the idiosyncratic innovations to the demand advantage and
labor market advantage processes, respectively. These shocks are serially uncorre-
lated and are independent to the other shocks in the model.

The past inputs are functions only of the past latent heterogeneity; therefore,
they are uncorrelated to future innovations in productivity, and, consequently, to
ε̃

y
jt. The remaining question is whether they are able to induce relevant variation to

be a valid instrument. Taking ρω-differences of Equations (C4), (C5), and (C6),

mjt − ρωmjt−1 =h`(`jt − ρω`jt−1) + hωηω
jt + hδ(ρδ − ρω)δjt−1 + ηδ

jt

+ hS(ρS − ρω)Sjt−1 + ηS
jt + (εm

jt − ρωεm
jt−1)

(C9)

wjt − ρωwjt−1 =γw(wjt−1 − ρωwjt−2) + γωηω
jt + γδ(ρδ − ρω)δjt−1 + γδηδ

jt

+ γS(ρS − ρω)Sjt−1 + γSηS
jt + (εw

jt − ρωεw
jt−1)

(C10)

`jt − ρω`jt−1 = θw(wjt − ρωwjt−1) + (ρS − ρω)Sjt−1 + ηS
jt + (ε`jt − ρωε`jt). (C11)
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The past materials choice mjt−1 is a function of past firm heterogeneity includ-
ing (ωjt−1, δjt−1, Sjt−1) as well as past errors including (εm

jt , εw
jt, ε`jt). Then, its rele-

vance as an instrument in Equation (C3) comes from its correlations to past wages
(wjt−1, wjt−2, ...) through adjustment costs and (δjt−1, Sjt−1, εm

jt) in Equations (C9)
and (C11). Correlations through δjt and Sjt are non-zero only if ρδ 6= ρω and
ρS 6= ρω. Additionally, we assume that hδ and θw are non-zero implying that the
demand and labor market advantages are relevant to these decisions.1 Under these
conditions, input choices in the more distant past {mjt−2, ...} are also valid instru-
ments. When these conditions do not hold, and there are no wage adjustment
costs, then the relevance of mjt−1 only comes from its correlation to εm

jt−1 which
could be optimization error but is in general just an idiosyncratic error component.
Moreover, inputs from the more distant past are not relevant instruments. The dif-
ferences in the persistence of the latent components is thus important in order to
use the past inputs as valid instruments and not rely solely on unidentified errors
for identification. The argument for using {`jt−1, `jt−2, ...} as valid instruments is
similar.

Demand function and demand advantages. Now I turn to identification of the
output demand side of the model, characterized by three key equations. Consider
a linearized version of Equation (2), in logs,

yjt = αpjt + δjt + εd
jt (C12)

which is the output demand equation of the firms. As discussed above, the price-
setting equation is determined once the other inputs are decided. Consider a linear
approximation of the price-setting policy function, Equation (9),

pjt = g``jt + gωωjt + gδδjt + gSSjt + ε
p
jt. (C13)

The third component of the demand side is Equation (C7) which describes the
dynamics of demand advantages. Taking the ρδ-quasi-first-difference of Equation

1This argument echoes the results of Gandhi et al. (2020) who study the nonparametric identi-
fication of gross output production functions using control function approaches. They argue that
without variation in the demand side of the model or adjustment costs, the gross output production
function is not nonparametrically identified.
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(C12),
yjt = ρδyjt−1 + α(pjt − ρδ pjt−1) +

(
ηδ

jt + εd
jt − ρδεd

jt−1

)
︸ ︷︷ ︸

≡ε̃d
jt

. (C14)

As with the production function, OLS estimates are biased since pjt is a contempo-
raneous decision and depends on the contemporaneous innovation in the demand
advantages, ηδ

jt. But for the same reason, and if ρδ 6= ρω, past prices {pjt−1, pjt−2, ...}
are valid instruments as they are uncorrelated to current innovations in demand
advantages or demand shocks, and they correlate to current prices as productivity
and demand advantages are persistent. Past realizations of other inputs and wages
will also be valid for a similar reason. Moreover, as we know from identification of
linear dynamic panel data models, past realizations of the outcome {yjt−2, ...} are
also valid instruments.2

Labor supply equation and labor market advantages. Lastly, I turn to identifi-
cation of the parameters of the labor side of the model. The three components are
the labor supply equation, Equation (C6); the wage-setting equation, Equation (C5);
and the dynamics of labor market advantages, Equation (C8). Taking ρS-differences
of Equations (C6) and (C5),

`jt = ρS`jt−1 + θ(wjt − ρSwjt−1) +
(

ηS
jt + ε`jt − ρSε`jt

)
︸ ︷︷ ︸

≡ε̃`jt

(C15)

wjt − ρSwjt−1 =γω(ρω − ρS)ωjt−1 + γωηω
jt + γS(ρδ − ρS)δjt−1 + γSηS

jt

+ γSηS
jt + (εw

jt − ρSεw
jt−1).

(C16)

Again, we know that OLS estimates of Equation (C15) are biased. As in the pre-
vious arguments, past realizations of the outcome {`jt−2, ...} are valid instruments.
With ρω 6= ρS and ρδ 6= ρS, we have access to additional valid instruments. First,
as wages are also a static decision, then past wages {wjt−1, wjt−2, ...} are also valid
instruments.3

2With independence of the innovation to productivity, ηω
jt , and the innovation to demand advan-

tages, ηδ
jt, as well as ρδ 6= ρω, then ε̃

y
jt is also a valid instrument.

3Moreover, with the additional assumption that the innovations to labor supply advantages are
independent of ηω

jt and ηδ
jt, then we have additional overidentifying restrictions because ε̃

y
jt and ε̃d

jt
are also valid instruments.
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Shock variances: covariance structures. The persistence of productivity, demand,
and labor market advantages are identified in the arguments above. Thus, the only
things left to obtain is the variance-covariance matrix of the shocks. The errors in
Equations (C3), (C14), and (C15) are of the form

ε̃z
jt = ηz′

jt + εz
jt − ρz′ε

z
jt−1 (C17)

where (z, z′) ∈ {(y, ω), (d, δ), (`, S)}. We can show that Var(εz
jt) and Var(ηz′

jt ) are
identified by the covariance structure of ε̃z

jt along with the uncorrelatedness as-
sumptions we have previously made about the innovations and measurement error
terms. In particular,

Var(εz
jt) =−

Cov(ε̃z
jt, ε̃z

jt−1)

ρz′
(C18)

Var(ηz′
jt ) =Var(ε̃z

jt)− (1 + ρ2
z′)Var(εz

jt) (C19)

which relies on ρz′ 6= 0. Furthermore, we assume that the variances are constant
for all t but with more time periods this can easily be relaxed.

The covariances of the shocks to productivity, demand, and labor market ad-
vantages are easily obtained from covariances between ε̃

y
jt, ε̃d

jt, and ε̃`jt.

Wage-setting and pass-through. Restating Equation (C10) here, we have

wjt − ρωwjt−1 =γw(wjt−1 − ρωwjt−2) + γωηω
jt + γδ(ρδ − ρω)δjt−1 + γδηδ

jt

+ γS(ρS − ρω)Sjt−1 + γSηS
jt + (εw

jt − ρωεw
jt−1).

(C20)

Since we have identified ρω, we can take a regression of (wjt− ρωwjt−1) on (wjt−1−
ρωwjt−2) but that gives a biased estimate of γw. However, we can instead instru-
ment (wjt−1− ρωwjt−2) with ε̃

y
jt−1 in the same regression to get γw. It is straightfor-

ward so see that it is a relevant instrument. The exclusion restriction arises from the
independence of the idiosyncratic errors of productivity ε

y
jt, and that the shock to

productivity ηω
jt−1 is independent of firm heterogeneity at t− 1 and is also indepen-

dent of the future shock at t. We can obtain overidentifying restrictions as ε̃d
jt and ε̃`jt

are valid instruments in the ρδ-quasi-first-differenced and ρs-quasi-first-differenced
versions of the wage equation, respectively.
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With γw, we can write

wjt − γwwjt−1 = γωωjt + γδδjt + γSSjt + εw
jt. (C21)

Then,

γω =
E((wjt − γwwjt−1)ε̃

y
jt)

Var(ηω
jt )

, γδ =
E((wjt − γwwjt−1)ε̃

d
jt)

Var(ηδ
jt)

, γS =
E((wjt − γwwjt−1)ε̃

`
jt)

Var(ηS
jt)

(C22)
which uses the variances which have previously been shown to be identified. This
result is important as it shows the identification of the pass-through parameters of
interest.

Material input. Restating Equation (C4), we have

mjt = h``jt + hωωjt + hδδjt + hSSjt + εm
jt . (C23)

Identifying the parameters of this equation is similar to how we obtained the pa-
rameters in the wage-setting equation. We can use past ε̃

y
jt−1, ε̃d

jt−1, and ε̃`jt−1 in
quasi-first-differenced versions of the materials equations to obtain h`. Once we
have h`, then we can use contemporaneous correlations with ε̃

y
jt, ε̃d

jt, and ε̃`jt to ob-
tain the pass-through parameters.
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D Appendix: Estimation of the output demand elastic-

ity

We are interested in obtaining an estimate of αp in the output demand equation

yjt = αp pjt + δjt + εd
jt, (D1)

under some specification of the process of the demand advantages, Equation (5).
We will use this estimate in a second-stage where we estimate the rest of the param-
eters of the model. This two-stage estimator may not be as efficient as estimators
that jointly estimate all the parameters but it may be computationally more stable.

I will construct a GMM-based estimator of αp. To be more transparent, for this
argument, I first consider a very simple specification of the dynamics of demand
advantages, based on a specification of the conditional quantile functions,

δjt = ρ1(υ
δ
jt)δjt−1 + ρ2(υ

δ
jt)δ

2
jt−1, (D2)

where υδ
jt is a uniformly distributed random variable that is serially uncorrelated,

in fact, statistically independent of past shocks, outcomes and choices of the firm.
Then, since δjt = yjt − αp pjt − εd

jt,

ξ jt ≡(yjt − αp pjt)− ρ1(υ
δ
jt)(yjt−1 − αp pjt−1)− ρ2(υ

δ
jt)(yjt−1 − αp pjt−1)

2 − ρ0

=εd
jt − ρ1(υ

δ
jt)ε

d
jt−1 + ρ2(υ

δ
jt)(ε

d
jt−1)

2 − ρ2(υ
δ
jt)(yjt−1 − αp pjt−1)ε

d
jt−1 − ρ0

. (D3)

We find conditional moments of the form E(ξ jt | Ωjt) = 0. Because of the strong
conditional independence assumptions of the model, we can include past outcomes
and choices in Ωjt. In particular, Ωjt = {yt−2, yt−3, ...., pt−2, pt−3, ..., k jt−1, k jt−2, ...}.
Focusing on the most RHS expression, the terms with εd

jt and εd
jt−1 have con-

ditional expectation given Ωjt. However, E(ρ2(υ
δ
jt)(ε

d
jt−1)

2 | Ωjt) = ρ2σ2
d , with

ρ2 = E(ρ2(υ
δ
jt)), which is possibly non-zero but is constant not dependent on el-

ements of Ωjt. Thus, including the extra parameter ρ0 in our definition of ξ jt is
convenient to take into account these non-zero but constant elements and obtain
zero conditional mean of ξ jt. Note that we needed the stronger conditional inde-
pendence assumptions to get independence of higher order moments of εd

jt−1 from
the variables in Ωjt.
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Now, we have conditional moments

E
[
(yjt − αp pjt)− ρ1(υ

δ
jt)(yjt−1 − αp pjt−1)− ρ2(υ

δ
jt)(yjt−1 − αp pjt−1)

2 − ρ0 | Ωjt

]
= 0

(D4)
but we do not observe υδ

jt. In fact, we are not interested in learning the specific
functions ρ1(·) or ρ2(·) as these are objects which we can estimate the second-
stage. As such, we can just define "nuisance" parameters ρ1 = E(ρ1(υ

d
jt)) and

ρ2 = E(ρ2(υ
d
jt)), and write

E

(yjt − αp pjt)− ρ1(yjt−1 − αp pjt−1)− ρ2(yjt−1 − αp pjt−1)
2 − ρ0︸ ︷︷ ︸

≡ξ jt(Djt;αp,ρ)

| Ωjt

 = 0 (D5)

with data Djt, which are conditional moment conditions that we can now op-
erationalize in a GMM estimator. Specifically, consider a vector of instruments
Zjt = (z1(Ωjt), ..., zN(Ωjt)), we consider an estimator which roughly resembles

(α̂p, ρ̂) = argmin
α,ρ

(
1
N ∑

j,t
Z′jtξ jt(Djt; αp, ρ)

)′
W

(
1
N ∑

j,t
Z′jtξ jt(Djt; αp, ρ)

)
, (D6)

for some weighting matrix W.
In practice, I consider the parametric specification of the dynamics of demand

advantages given in Equation (19). I use the instruments

Zjt = (yjt−2, yjt−3, pjt−2, pjt−3, k jt−1, k jt−2) (D7)

and an identity weighting matrix.4

4The instrument set may also be augmented with higher-order polynomials of past outcomes and
choices to possibly improve efficiency of the estimator. There are alternative weighting matrices that
could be considered.
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E Appendix: Second-stage estimation details

To simplify notation, in this section I assume that we observe a balanced panel
of J firms for T periods. For each firm, we observe Dj = {yT

j , mT
j , `T

j , kT
j , wT

j , pT
j }

where I use the shorthand zT
i to denote {zj1, zj2, ..., zjT}. Productivity (ωT

j ), de-
mand advantages (δT

j ), and labor market advantages (ST
j ) are unobserved. We

are interested in obtaining estimates for the parameters that govern the dynam-
ics of latent heterogeneity γ = (aω

k , aδ
k, aS

k ), and the parameters that describe the
technology, environment, initial conditions, and response functions of the firm
µ = (β, α, θ, bm

k , bw
k , bk

k, bw1
k , bω1

k , bδ1
k , bS1

k , σ).

E.1 Likelihood function

The individual complete-data likelihood is

f (Dj, ωT
j , δT

j , Sj|k j1) =
T

∏
t=1

f (yjt, mjt, `jt, pjt | k jt, wjt, ωjt, δjt, Sjt)

×
T

∏
t=2

f (wjt | wjt−1, k jt, ωjt, δjt, Sjt)

×
T

∏
t=2

f (k jt | k jt−1, wjt−1, ωjt−1, δjt−1, Sjt)

×
T

∏
t=2

f (ωjt, δjt, Sjt | ωjt−1, δjt−1, Sjt)

× f (wj1 | k j1, ωj1, δj1, Sj1)× f (ωj1, δj1, Sj1|k j1).

(E1)

Simultaneity. Output y is simultaneously determined by production and de-
mand, Equations (1) and (2), respectively. However, this specific model can be
shown to have a triangular structure.5 Moreover, since the individual errors of
Equations (12), (13), (14), and (26) are assumed distributed Normal and are inde-

5In the general case, the likelihood of the simultaneous system with Gaussian errors will include
a non-trivial term related to the Jacobian of the system (Amemiya, 1977). With a triangular structure,
and appropriate normalization, this term is a constant in the likelihood.
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pendent of each other, then

f (yjt, mjt, `jt, pjt | k jt, wjt, ωjt, δjt, Sjt) ∝

[
1
σd

φ

(
yjt −Qd(pjt, δjt)

σd

)]

×
[

1
σy

φ

(
yjt −Qy(k jt, mjt, `jt, ωjt)

σy

)]
×
[

1
σ`

φ

(
`jt −Q`(wjt, Sjt)

σ`

)]

×
[

1
σm

φ

(
mjt −Qm(k jt, `jt, ωjt, δjt, Sjt)

σm

)]
(E2)

Note that if the latent variables were observed, the simultaneity is inconsequential
and Equations (12), (13), (14), and (26) could be estimated using OLS.

Conditional density of latent heterogeneity. Equations (18), (19), and (20) are
flexible parmetrizations of the conditional quantile functions of the latent firm het-
erogeneity. However, the parameters aω

k , aδ
k, and aS

k involve a continuum of pa-
rameters indexed by τ ∈ (0, 1) which makes computing the likelihood infeasible.
The insight of Arellano and Bonhomme (2016) is that we can instead use a par-
ticular approximation of the quantile functions that admits a simple closed-form
approximation of the conditional density.

To illustrate, consider the conditional distribution of ωjt conditional on ωjt−1

whose conditional quantiles are specified in Equation (18). We approximate aω
k (τ)

as piecewise-linear interpolating splines on the grid [τ1, τ2], [τ2, τ3], ..., [τL−1, τL]

contained in the unit interval. Furthermore, we extend the intercepts aω
0 (τ) such

that they are the quantiles of an exponential distribution on (0, τ1] and [τL, 1) with
parameters λω

− and λω
+, respectively. Denoting aω

k` = aω
k (τ`), then aω

k depends on
{aω

k1, ..., aω
kL, λω

−, λω
+}. Then, we can write

f (ωjt | ωjt−1) =1{ωjt < Aω
jt (1)} × τ1λω

− exp
[
λω
−(ωjt − Aω

jt (1))
]

+
L−1

∑
`=1

1{Aω
jt (`) ≤ ωjt < Aω

jt (`+ 1)} × τ`+1 − τ`
Aω

jt (`+ 1)− Aω
jt (`)

+ 1{ωjt ≥ Aω
jt (L)} × (1− τL)λ

ω
+ exp

[
−λω

+(ωjt − Aω
jt (L))

] (E3)
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where Aω
jt (`) = ∑K

k=0 aω
k`ϕω

k (ωjt−1) for all (j, t, `). This is similarly done for the
conditional densities of the other two latent variables.

E.2 Stochastic EM

I adapt a similar estimation algorithm as in Arellano and Bonhomme (2016) and
Arellano et al. (2017) based on the stochastic EM algorithm. The stochastic EM is
a simulated version of the classical EM algorithm developed by Dempster et al.
(1977). A main difference from typical EM algorithms is that the M-step is not
based on likelihood maximization. Instead, we implement the M-step as a series
of quantile regressions and linear regressions which makes the step more compu-
tationally efficient.

We start with an initial guess of the parameters (γ(0), µ(0)). For m = 1, ..., M, we
alternate between the following two steps:

1. Stochastic E-step. Take S draws of the latent variables from the conditional
distribution. That is, draw {ω(s)

jt , δ
(s)
jt , S(s)

jt }
T
t=1, for s = 1, ..., S, from

f
(

ωT
j , δT

j , ST
j | Dj; γ(m−1), µ(m−1)

)
. (E4)

In practice, this is done through a random-walk Metropolis-Hastings MCMC
algorithm detailed below.

2. M-step. As mentioned, I obtain (γ(m), µ(m)) in a series of quantile regressions
and OLS regressions. Specifically,

• Under the chosen parametrization, az
k(τ) is fully specified by the pa-

rameters {az
k1, ..., az

kL, λz
−, λz

+}. This is true for each of the elements of
γ = (aω

k , aω1
k , aδ

k, aδ1
k , aS

k , aS1
k ). To illustrate, the parameters of dynamics of

the latent variables satisfy, for ` = 1, ..., L,

{âz,(m)
0` , ..., âz,(m)

K` } = argmin
az

0`,...,a
z
K`

S

∑
s=1

J

∑
j=1

T

∑
t=2

ρτ`

(
z(s)it −

K

∑
k=0

az
k`ϕk

(
z(s)jt−1, ageit

))
(E5)

where ρτ(u) = u(τ − 1{u ≤ 0}) is the so-called “check function”. This
optimization problem corresponds to a standard quantile regression.
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Moreover,

λ̂
z,(m)
− = −

∑S
s=1 ∑J

j=1 ∑T
t=2 1

{
z(s)it ≤ Âz,(m)

jts (1)
}

∑S
s=1 ∑J

j=1 ∑T
t=2

(
z(s)it − Âz,(m)

jts (1)
)
1

{
z(s)it ≤ Âz,(m)

jts (1)
} (E6)

and

λ̂
z,(m)
+ =

∑S
s=1 ∑J

j=1 ∑T
t=2 1

{
z(s)it ≥ Âz,(m)

jts (L)
}

∑S
s=1 ∑J

j=1 ∑T
t=2

(
z(s)it − Âz,(m)

jts (L)
)
1

{
z(s)it ≥ Âz,(m)

jts (L)
} (E7)

where Âz,(m)
jts (`) = ∑K

k=0 âz,(m)
k` ϕk

(
z(s)jt−1, agejt

)
for all (j, t, `, s).

• The parameters of the production function (β(m)), demand function (α(m)),
labor supply function (θ(m)), response functions

(
bm,(m)

k , bw,(m)
k , bi,(m)

k

)
,

and initial conditions
(

bw1,(m)
k , bω1,(m)

k , bδ1,(m)
k , bS1,(m)

k

)
satisfy least squares

criteria. For instance, for the materials response function,

{b̂m,(m)
0 , ..., b̂m,(m)

K } = argmin
b0,...,bK

S

∑
s=1

J

∑
j=1

T

∑
t=1

(
mjt −

K

∑
k=0

bk ϕm
k

(
k jt, `jt, ω

(s)
jt , δ

(s)
jt , S(s)

jt

))2

,

(E8)
and the corresponding variance of the equation residual is estimated as

σ
2,(m)
m =

1
SJT

S

∑
s=1

J

∑
j=1

T

∑
t=1

(
mjt −

K

∑
k=0

b̂m,(m)
k ϕm

k

(
k jt, `jt, ω

(s)
jt , δ

(s)
jt , S(s)

jt

))2

.

(E9)

The algorithm is stopped after M iterations and the parameter estimates is an av-
erage of the last few parameter draws; that is, (γ̂, µ̂) = 1

M̃ ∑M
m=M−M̃−1

(
γ(m), µ(m)

)
.

In practice, I run the algorithm for M = 150 iterations and take the mean of the last
M̃ = 30 iterations.

Drawing from the posterior. The conditional distribution is proportional to the
likelihood. As we can compute the likelihood, Markov Chain Monte Carlo (MCMC)
methods is an appealing method to draw from the conditional distribution. In this
paper, I follow Arellano et al. (2017) and use a random-walk Metropolis-Hastings
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algorithm.6 To ease notation, let ηj = (ωT
j , δT

j , ST
j ), and Dj be all the data we observe

from firm j. We start with an initial draw η
(0)
j , and for i = 1, ..., N,

1. Proposal: η∗j = η
(i−1)
j + ε j with ε j ∼ N (0, Σ)

2. Compute the acceptance probability

ρ(η∗j | η(i−1)) = min

1,
f
(

Dj | η∗j

)
f
(

Dj | η
(i−1)
j

)
 (E10)

3. Draw u from U (0, 1) and we assign the new draw as follows

η
(i)
j =

η∗j if u ≤ ρ(η∗j | η(i−1))

η
(i−1)
j otherwise.

(E11)

This produces a chain of draws from the conditional distribution of interest. In
practice, I implement a block-type of MH algorithm. I set N = 100. The last S < N
draws are used in the subsequent M-step. To ease the burden on computation, I
choose S = 1. The variance of the random walk proposal is calibrated to target an
acceptance rate of around 30%.

6There are alternative MCMC methods (e.g., slice sampling) and alternative simulation methods
for proposals (e.g., particle filters).
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F Appendix: Model fit

Figure F1: Convergence in EM

(a) Sector 10
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(c) Sector 25
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Notes: Path of complete-data log-likelihood over EM iterations in sector-specific estimations. Sector 10 is food
products, Sector 14 is clothing, and Sector 25 is metal products.

Figure F2: Demand elasticity bootstrap distributions

(a) Sector 10
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(c) Sector 25
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Notes: Bootstrap densities of the demand elasticities clustered at the firm level estimated by GMM (see
Appendix D for details) using 250 bootstrap replications. Point estimate (vertical line) and 90% confidence
interval also reported. Sector 10 is food products, Sector 14 is clothing, and Sector 25 is metal products.
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Figure F3: Fit on output

(a) Sector 10, data
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(b) Sector 14, data
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(c) Sector 25, data
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(d) Sector 10, data
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(e) Sector 14, data
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(f) Sector 25, data
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(g) Sector 10, model
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(h) Sector 14, model
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(i) Sector 25, model

0
1

0.2
 = 0.075
 = 0.93

0.4

0.8 1

0.6

p
e
rs

is
te

n
c
e

0.8

0.6 0.8

percentile 
init

1

0.6

percentile 
shock

0.4

1.2

0.4
0.2 0.2

0 0

Panels (a)–(c) present the sector-specific marginal distributions of output in the data (solid) and in simulation
(dotted). Panels (d)–(f) show the persistence of output in the data while Panels (g)–(i) show the persistence
of output in simulation. Persistence is measured as the average derivative of the conditional quantile of yjt

on yjt−1 with respect to yjt−1. Materials, capital, and labor are fixed in the simulation. Sector 10 is food
products, Sector 14 is clothing, and Sector 25 is metal products.
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Figure F4: Fit on wages

(a) Sector 10, data
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(b) Sector 14, data
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(c) Sector 25, data
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(d) Sector 10, data
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(e) Sector 14, data
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(f) Sector 25, data
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(g) Sector 10, model
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(h) Sector 14, model
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(i) Sector 25, model
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Panels (a)–(c) present the sector-specific marginal distributions of log-wages in the data (solid) and in sim-
ulation (dotted). Panels (d)–(f) show the persistence of log-wages in the data while Panels (g)–(i) show the
persistence of log-wages in simulation. Persistence is measured as the average derivative of the conditional
quantile of ln wjt on ln wjt−1 with respect to ln wjt−1. Capital is taken as fixed in the simulation. Sector 10
is food products, Sector 14 is clothing, and Sector 25 is metal products.
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Table F1: Production function estimates

Production Function
βk β` βm βk + β` + βk

Food products (Sector 10) 0.1338 0.1124 0.7376 0.9838

Clothing (Sector 14) 0.2718 0.3132 0.4138 0.9988

Metal products (Sector 25) 0.2632 0.1560 0.5891 1.0083

Notes: Point estimates of the production function parameters. The sum of the input elasticities in the Cobb-
Douglas specification, indicative of returns to scale, also reported.
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G Appendix: Additional results

Figure G1: Cross-sectional distribution of productivity and demand advantages,
by sector

(a) Productivity, Sector 10
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(b) Productivity, Sector 14
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(c) Productivity, Sector 25
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(d) Demand, Sector 10
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(e) Demand, Sector 14
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(f) Demand, Sector 25
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Notes: Panels (a)–(c) and (d)–(f) present sector-specific estimates of the cross-sectional distribution of pro-
ductivity and demand advantages, respectively. Also reported are the 10th, 50th, and 90th percentiles of the
distributions. Dispersion of the distributions measured as exp(P90− P10) also reported. Kernel densities
estimated on data with top and bottom 2% trimmed. Percentiles computed with full data. Sector 10 is food
products, Sector 14 is clothing, and Sector 25 is metal products.
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Figure G2: Labor market advantages, labor supply elasticity, and implied static
markdowns, by sector

(a) Labor market advantages,
Sector 10
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(b) Labor market advantages,
Sector 14
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(c) Labor market advantages,
Sector 25

-3 -2 -1 0 1 2 3

Labor advantage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
e

n
s
it
y

 p10:-1.3894

 p50:-0.0811

 p90:1.0546

 exp(p90 - p10):11.5182

(d) Labor supply elasiticities,
Sector 10
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(f) Labor supply elasiticities,
Sector 25
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(g) Static markdowns, Sector
10
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(h) Static markdowns, Sector
14
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(i) Static markdowns, Sector
25
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Notes: Panels (a)–(c) present estimates of the distributions of labor market advantages. Panels (d)–(f) present
estimates of the labor supply elasticities faced by firms implied by the labor supply function in Equation (14).
Panels (g)–(i) present estimates of the distribution of markdowns implied by the labor supply elasticities and
static wage-setting, specifically, measured as ε`w

jt /(1 + ε`w
jt ) where ε`w

jt is the labor supply elasticity of wages.
Kernel densities estimated on data with top and bottom 2% trimmed. Percentiles computed with full data.
Sector 10 is food products, Sector 14 is clothing, and Sector 25 is metal products.
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Figure G3: Joint density of firm heterogeneity and shocks, Sector 10
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-6 -4 -2 0 2 4 6 8 10 12

Demand advantage

-4

-3

-2

-1

0

1

2

3

4

5

6

L
a

b
o

r 
a

d
v
a

n
ta

g
e

Correlation:0.6483

(d) (Φ−1(υω
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(e) (Φ−1(υω
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(f) (Φ−1(υδ
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Notes: Sector 10, food products. Panels (a)–(c) are contour plots of the estimated joint distributions of pro-
ductivity and demand advantages, productivity and labor market advantages, and demand and labor market
advantages, respectively. Panels (d)–(f) are contours of the estimated copula densities of the shocks to pro-
ductivity (υω

jt ), demand (υδ
jt), and labor market advantages (υS

jt). As a graphical convention, I rescale the
marginals of the shocks so they are standard normal. Correlations also reported.
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Figure G4: Joint density of firm heterogeneity and shocks, Sector 10
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Notes: Sector 14, clothing. Panels (a)–(c) are contour plots of the estimated joint distributions of productivity
and demand advantages, productivity and labor market advantages, and demand and labor market advantages,
respectively. Panels (d)–(f) are contours of the estimated copula densities of the shocks to productivity (υω

jt ),

demand (υδ
jt), and labor market advantages (υS

jt). As a graphical convention, I rescale the marginals of the
shocks so they are standard normal. Correlations also reported.
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Figure G5: Joint density of firm heterogeneity and shocks, Sector 10
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Notes: Sector 25, metal products. Panels (a)–(c) are contour plots of the estimated joint distributions of
productivity and demand advantages, productivity and labor market advantages, and demand and labor mar-
ket advantages, respectively. Panels (d)–(f) are contours of the estimated copula densities of the shocks to
productivity (υω

jt ), demand (υδ
jt), and labor market advantages (υS

jt). As a graphical convention, I rescale the
marginals of the shocks so they are standard normal. Correlations also reported.
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Figure G6: Dynamics of productivity, demand, and labor market advantages, Sec-
tor 10
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(c) Conditional persistence in
labor market advantages
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(d) Conditional dispersion of
productivity
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(e) Conditional dispersion of
demand advantages
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(f) Conditional dispersion of
labor market advantages
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(g) Conditional skeweness of
productivity
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(h) Conditional skewness of
demand advantages
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(i) Conditional skewness of la-
bor market advantages
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Notes: Sector 10, food products. Panels (a)–(c) are estimates of the persistence of productivity, demand, and
labor market advantages, respectively, conditional on the percentile of the past state (τinit) and percentile of
the shock (τshock). They are obtained as estimates of the average derivative of the conditional quantile function
of the state zjt given the previous state zjt−1 with respect to zjt−1. Panels (d)–(f) present estimates of the
conditional dispersion of the states given past states measured as the P90− P10 of the predictive distribu-
tion. Panel (g)–(j) present estimates of the conditional skewness of the states given past states measured as
(P90−P50)−(P50−P10)

P90−p10 of the predictive distribution.
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Figure G7: Dynamics of productivity, demand, and labor market advantages, Sec-
tor 14
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(d) Conditional dispersion of
productivity
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(e) Conditional dispersion of
demand advantages
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(f) Conditional dispersion of
labor market advantages
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(g) Conditional skeweness of
productivity

0 0.2 0.4 0.6 0.8 1

Percentile 
t-1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

K
e
lle

y
 S

k
e
w

n
e
s
s
 o

f 
t

(h) Conditional skewness of
demand advantages
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(i) Conditional skewness of la-
bor market advantages
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Notes: Sector 14, clothing. Panels (a)–(c) are estimates of the persistence of productivity, demand, and labor
market advantages, respectively, conditional on the percentile of the past state (τinit) and percentile of the
shock (τshock). They are obtained as estimates of the average derivative of the conditional quantile function
of the state zjt given the previous state zjt−1 with respect to zjt−1. Panels (d)–(f) present estimates of the
conditional dispersion of the states given past states measured as the P90− P10 of the predictive distribu-
tion. Panel (g)–(j) present estimates of the conditional skewness of the states given past states measured as
(P90−P50)−(P50−P10)

P90−p10 of the predictive distribution.
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Figure G8: Dynamics of productivity, demand, and labor market advantages, Sec-
tor 25
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(c) Conditional persistence in
labor market advantages

0
1

0.2
 = 0.11
 = 0.91

0.4

0.8 1

0.6

p
e
rs

is
te

n
c
e

0.8

0.6 0.8

percentile 
init

1

0.6

percentile 
shock

0.4

1.2

0.4
0.2 0.2

0 0

(d) Conditional dispersion of
productivity

0 0.2 0.4 0.6 0.8 1

Percentile of 
t-1

0.2

0.4

0.6

0.8

1

1.2

1.4

P
9
0
-P

1
0
 o

f 
t

(e) Conditional dispersion of
demand advantages

0 0.2 0.4 0.6 0.8 1

Percentile of 
t-1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

P
9
0
-P

1
0
 o

f 
t

(f) Conditional dispersion of
labor market advantages
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(g) Conditional skeweness of
productivity
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(h) Conditional skewness of
demand advantages
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(i) Conditional skewness of la-
bor market advantages
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Notes: Sector 25, metal products. Panels (a)–(c) are estimates of the persistence of productivity, demand, and
labor market advantages, respectively, conditional on the percentile of the past state (τinit) and percentile of
the shock (τshock). They are obtained as estimates of the average derivative of the conditional quantile function
of the state zjt given the previous state zjt−1 with respect to zjt−1. Panels (d)–(f) present estimates of the
conditional dispersion of the states given past states measured as the P90− P10 of the predictive distribu-
tion. Panel (g)–(j) present estimates of the conditional skewness of the states given past states measured as
(P90−P50)−(P50−P10)

P90−p10 of the predictive distribution.
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Figure G9: Autocorrelation in wages, by sector

(a) Sector 10
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(b) Sector 14
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(c) Sector 25
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Notes: Marginal distribution of the derivative of the wage-setting equation given past log-wages ln wjt−1 and
other state variables (capital k jt, productivity ωjt, demand δjt, and labor market advantages Sjt) with respect
to ln wjt−1. Distributions of individual sectors weighted by sector sales. Kernel densities estimated on data
with top and bottom 2% trimmed. Percentiles computed with full data. Sector 10 is food products, Sector 14
is clothing, and Sector 25 is metal products.
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