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Bayesian Inference
Elements:
> Data: {y;}/4
» Model/likelihood: f(y | )
» Prior on parameters: p(6), 6 € ©

Goal: Integrals involving the posterior p(6 | y) = %
©

E[h(0) | y] = /@ hO)p(0 | v) d6

This includes posterior means, posterior variances, credible
intervals, and the posterior cdf

Problems:
» Obtaining the posterior density is difficult/impossible

» Integrals are too complicated (intractable)
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Possible Solution: Simulation (I)

Suppose we can produce iid draws from p(6|y): {H(m)}fnﬂzl

An estimator of E[h(0) | y] could be
1M
A — — (m)
= mZ::l f (9 )

By a LLN, -
hw = E[h(0) | ]
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Possible Solution: Simulation (I1)

Maybe we cannot sample iid from the posterior but we can obtain
. . M . . .

a stationary, ergodic sequence {6(™} " with marginal density

p(0 | y)

The estimator hyy is still valid.

Under stationarity and ergodicity, we have a LLN that tells us

b B E[h(9) | y]
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Markov Chains

Definition (Markov Chain) A continuous-state Markov Chain is a
sequence (1), 92 that satisfies the Markov property:

Pr (0U+1> 160, ...,9(1>) — Pr (.90'“) | 90))

where Pr (¢’ | 0) is called the transition kernel and is denoted by
k(0'|0). It gives us the marginal density of the next-period draws:

pm(0') = /@ #(0/]0)pm—1(0) O

The stationary distribution of the given transition kernel (if it
exists), is such that

ps(0) = /@ w(0'10)ps(6) do
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Markov Chain Monte Carlo (MCMC)

» MCMC is a collection of methods to construct transition
kernels (0’ | #) with stationary distribution p(6 | y)

» Given an initial value 8(®) we can generate a sequence
61 62 . 9(M) using the transition kernel k(6 | 0).
With M — oo,
» Marginal distribution of 8™ converges to p(f | y)
» The dependent sample {9(1)7 0 .. H(M)} will have an
empirical distribution that approaches p(6 | y)
» Usually, the way we will construct the sequence is such that we
can use a LLN

M
~ 1
— (m)) P
P Mmz_:lh(e ) S Eh6) | y]
» Two popular methods:
(1) Metropolis-Hastings Algorithm
(2) Gibbs Sampler
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Metropolis-Hastings (MH) Algorithm
Inputs:
> Way to compute the un-normalized posterior

p(0 | y) o f(y [ 6)p(6)
» Proposal density we know how to draw from: g(6’ | 6)
Algorithm: Start with initial draw #®). For m=1,... M

1. Draw 6* from g(# | 8(™=1)) and u from 2(0,1) independently
2. Compute acceptance probability

F(y | 0°)p(6*)q(0™1) | 6%) }

6*160(™ 1) = min{ 1
AT m'”{ F |0 D)p(Em D) (6 | 60 D)

3. New draw

O if u < p(p*0(m—1)
1 6(m=1) otherwise
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Why does it work? (Intuition)
Suppose that we are using a symmetric proposal distribution; that
is, q(6* | 0) = q(6 | 6*). The sequence 81, ..., (M) generated by
k(0 | ) should have empirical distribution close to p(6|y).
» Given (0',0), one of the following is true:

p(0" |y)=p(@|y) or p(6[y)<p(@]y)

> If p(¢ | y) = p(0|y)
» For every 6 in the sequence, we should have at least as many 6’

» Accept all 8 — ¢’
> If p(0 [ y) <p(O]y)
» For every 6, we should have on average Z((%\B/)) draws of 6’

;. . p(6'ly)
» Accept 8 — 0’ with probability 2(01y)

» Given ), accept proposal 6’ with probability
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Proposal Density

What makes a good proposal density?
» It is easy to sample from q(6*|0) for any 6
> Easy to compute the acceptance ratio p
» Proposals are reasonable distances apart in ©

» Proposals are not rejected too frequently

Main classes for proposal densities:
> Random Walk: 6* = 6(™ 4 ¢
» [If the distribution of € is symmetric about 0, then
a(0" 1 0) = a0 | )
> Typical choices: € ~ N(0,Q) or e ~ U(—6,0)
» Independent: q(0* | 6) = q(0*)
> {Q(m)}lnay display less serial dependence
» Candidate: “easy-to-draw-from” approximation of the posterior

8/22



Other Implementation Details

Burn-in
» Discard first n draws
» Reduces dependence on the (possibly “bad”) initial draw

» Idea: Your initial draws might be in a low probability region
= oversampling of low probability region
= allow time for algorithm to “get to” high probability region

Thinning
» Only retain every dth iteration of the chain
» Reduces dependence between draws

— BUT! Average on thinned sequence has greater variance
than average over entire sequence

» Possibly useful when computationally-constrained
— If the chain has very high autocorrelations, you would want
to run the chain for a long time but you might not be able to
store the entire chain (or operations on long chains are costly)
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Example: Normal Linear Regression with Known Variance

> Model:

YilB, xi ~ N (Bo + B1xi, 1)
» Prior:

Bo 1 10 0

()~ () (5 %))
» Proposal:

()= () o o= (@) (5" o))
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Example: Code (I)

function val = llikelihood(y, x, params)
be = params(1);
bl = params(2);

% Get predictions
pred = b® + bl * x;
indiv_1like = normpdf(y, pred, 1);
indiv_11 = log(indiv_like);
val = sum(indiv_11);
end

function val = lprior(params)
be = params(1);
bl = params(2);

% Prior on be;
b@_prior = normpdf(be, 1, 1@);
bl_prior = normpdf(bl, 1, 5);

% Prior
val = log(be_prior) + log(bl_prior);
end

function val = unnorm_lpost(y, x, params)
val = 1likelihood(y, x, params) + lprior(params);

end
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Example: Code (lII)

% MH Parameters
burn = 5888;
M = Seee;

chain = NaN(2, burn + M);
chain(:, 1) = [1; 1];
accept = NaN(1, burn + M);

for m = 2:(burn + M)
% Proposal
proposal = chain(:, m - 1) + mvnrnd([@; @], [@.01, @;
e, 0.01])";

% Acceptance probability
rho = exp{unnorm_lpost(y, x, proposal) - unnorm_lpost(y, %, chain(:, m - 1)));
rho = min(1, rho);

% Update

if rand(1) <= rho
chain(:, m) = proposal;
accept(m) = 1;

else
chain(:, m) = chain(:, m - 1);
accept(m) = @;

end

end

% Acceptance ratio
mean(accept(:, burn+l:end))
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Example: Posterior Draws
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Gibbs Sampler

Inputs:
» Partition of the parameter vector 6 = (61, 65)

» Way to draw from the conditional posteriors p(6; | 62,y) and
p(02 | 01,y)

Algorithm: Start with initial draw 0{”. For m=1,... M
1. Draw Gém) from p(62 | 9:(Lm_1),y)
2. Draw Ggm) from p(61 | Ggm),y)

Generalizable to a partition 6 = (01, ...,04)
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Example: Normal Regression with Independent N-1G Priors

> Model:
y=XB+¢e, e ~N(0,0%l,)

» Priors:

B ~N(fo, Xo)

02 ~Inv-Gamma(ag, bg)

We will use the parameterization consistent with Matlab: ag is
the shape parameter while by is the scale parameter.
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Example: Conditional Posteriors

The conditional posteriors are (verifying this is good exercise)

/6 | U2ay NN(/BLZI)
o2 | B,y ~Inv-Gamma(ay, b;)

with
1 —1
Y= (I 4+ = X'X
1 < 0 +O'2 )

5 =5 (T + ( 25xx) B)
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Example: Code (I)

# Prior hyperparameters
beta® = [1; 1];

Sigmae = [2, 8; @, 2];
ag = 1;

b = 1;

% OLS coefficient
beta_ols = (X" * X) W X" * y;
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Example: Code (lII)

% Gibbs Sampler
burn = 5@e0;

M=

$000;

chain = NaN(2, burn + M);

chain(1:2, 1) = beta_ols;

for

end

m = 2:(burn + M)

% Draw sigma_sq conditional on beta

al = (N / 2) + a8;

bl = (1 / be) + 8.5 * (y - X * chain(1:2, m - 1))" * (y - X * chain(1:2, m - 1));
bl =1 / bl;

chain(3, m) = 1 / gamrnd(al, bl};

% Draw beta conditional on sigma_sgq

Sigmal = pinv(pinv(Sigma®) + X" * X / chain(3, m));

betal = Sigmal * (pinv(Sigma@) * beta® + X' * X * beta_ols / chain(3, m));
chain(1:2, m) = mvnrnd(betal, Sigmal)"';
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Posterior Draws

1400 bo 1400 A 1400 o
1200 1 1200 1200 |
1000 | 1 1000 1000 |
800 1 800 800
600 F 1 600 600 |
400 | 1 400 400 |
200 1 200 200 |
0 0 0
05 1 15 15 05

19/22



Gibbs Sampler as a Special Case of Metropolis-Hastings

Define a MH algorithm where for each iteration m=1,..., M,
there are d sub-steps. Entire algorithm has Md steps. The jth
sub-step corresponds to an update of the jth partition of the
parameter vector.

The proposal density implied by the Gibbs sampler for the jth
sub-step of the mth iteration (also the (md + j)th step) is

x|p(s—1) ox _ pls—1)
p(gjwfj \Y) Ife—j_efj

Gibbs(p*|n(s—1)y _
0*|0 =
a5 (0] ) {O otherwise

where s = md + .
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Gibbs Sampler as a Special Case of Metropolis-Hastings

Consider a valid proposal — that is, 9*_J- = 9(_51.71).
Then, the MH acceptance ratio is
p(0" | y) /a6 [ 6¢~1) p(0" | y)/p(8716% Y, y)

MM&ﬂ|yv¢%“(“*”\m>_p(slwapo1!93»0

Note that
p(07y) = p(0;107, y)p(0=1y) = p(6;16°:7, y)p(6° Vly)
P65 Dly) = p(8° 18, y)p(8°V1y) = (651675, y)p(6%y)
Then,
PO I)/p@105 ) P05V 1Y)

PO | y)/p(0F Y 167 y)  p(oS | )

Thus, all proposals are accepted.
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Combining Gibbs Sampler and Metropolis-Hastings

» When the dimension of @ is large, it is often beneficial to work
with a partition of the vector § = (01, ...,04), as in the Gibbs
sampler

» In some cases, however, sampling from some (or all) of the
conditional distributions p(6; | 6—;, y) may be impossible

> We can construct a specific MH algorithm where we instead
draw from a proposal g(6; | 0—;,y) in cases where we cannot
draw from the conditional distribution. Then, the proposal
density at the mth MH iteration and jth sub-step is

g(6; 10177 7Y) it or; =63y

0 otherwise

(0" | o79+70) = {
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