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Bayesian Inference
Elements:

I Data: {yi}ni=1

I Model/likelihood: f (y | θ)

I Prior on parameters: p(θ), θ ∈ Θ

Goal: Integrals involving the posterior p(θ | y) = f (y |θ)p(θ)∫
Θ f (y |θ∗)p(θ∗)dθ∗

E[h(θ) | y ] =

∫
Θ
h(θ)p(θ | y) dθ

This includes posterior means, posterior variances, credible
intervals, and the posterior cdf

Problems:

I Obtaining the posterior density is difficult/impossible

I Integrals are too complicated (intractable)
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Possible Solution: Simulation (I)

Suppose we can produce iid draws from p(θ|y):
{
θ(m)

}M
m=1

An estimator of E[h(θ) | y ] could be

ĥM =
1

M

M∑
m=1

h
(
θ(m)

)

By a LLN,
ĥM

p→ E[h(θ) | y ]
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Possible Solution: Simulation (II)

Maybe we cannot sample iid from the posterior but we can obtain

a stationary, ergodic sequence
{
θ(m)

}M
m=1

with marginal density
p(θ | y)

The estimator ĥM is still valid.

Under stationarity and ergodicity, we have a LLN that tells us

ĥM
p→ E[h(θ) | y ]
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Markov Chains

Definition (Markov Chain) A continuous-state Markov Chain is a
sequence θ(1), θ(2), ... that satisfies the Markov property:

Pr
(
θ(j+1) | θ(j), ..., θ(1)

)
= Pr

(
θ(j+1) | θ(j)

)
where Pr (θ′ | θ) is called the transition kernel and is denoted by
κ(θ′|θ). It gives us the marginal density of the next-period draws:

pm(θ′) =

∫
Θ
κ(θ′|θ)pm−1(θ) dθ

The stationary distribution of the given transition kernel (if it
exists), is such that

pS(θ′) =

∫
Θ
κ(θ′|θ)pS(θ) dθ
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Markov Chain Monte Carlo (MCMC)

I MCMC is a collection of methods to construct transition
kernels κ(θ′ | θ) with stationary distribution p(θ | y)

I Given an initial value θ(0) we can generate a sequence
θ(1), θ(2), ..., θ(M) using the transition kernel κ(θ′ | θ).
With M →∞,
I Marginal distribution of θ(M) converges to p(θ | y)
I The dependent sample

{
θ(1), θ(2), ..., θ(M)

}
will have an

empirical distribution that approaches p(θ | y)
I Usually, the way we will construct the sequence is such that we

can use a LLN

ĥM =
1

M

M∑
m=1

h
(
θ(m)

)
p→ E[h(θ) | y ]

I Two popular methods:

(1) Metropolis-Hastings Algorithm
(2) Gibbs Sampler
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Metropolis-Hastings (MH) Algorithm
Inputs:
I Way to compute the un-normalized posterior

p(θ | y) ∝ f (y | θ)p(θ)

I Proposal density we know how to draw from: q(θ′ | θ)

Algorithm: Start with initial draw θ(0). For m = 1, ...,M

1. Draw θ∗ from q(θ | θ(m−1)) and u from U(0, 1) independently

2. Compute acceptance probability

ρ(θ∗|θ(m−1)) = min

{
1,

f (y | θ∗)p(θ∗)q(θ(m−1) | θ∗)
f (y | θ(m−1))p(θ(m−1))q(θ∗ | θ(m−1))

}
3. New draw

θ(m) =

{
θ∗ if u ≤ ρ(θ∗|θ(m−1))

θ(m−1) otherwise
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Why does it work? (Intuition)
Suppose that we are using a symmetric proposal distribution; that
is, q(θ∗ | θ) = q(θ | θ∗). The sequence θ(1), ..., θ(M) generated by
κ(θ′ | θ) should have empirical distribution close to p(θ|y).

I Given (θ′, θ), one of the following is true:

p(θ′ | y) ≥ p(θ | y) or p(θ′ | y) < p(θ | y)

I If p(θ′ | y) ≥ p(θ | y)
I For every θ in the sequence, we should have at least as many θ′

I Accept all θ → θ′

I If p(θ′ | y) < p(θ | y)

I For every θ, we should have on average p(θ′|y)
p(θ|y) draws of θ′

I Accept θ → θ′ with probability p(θ′|y)
p(θ|y)

I Given θ, accept proposal θ′ with probability

min

{
1,

p(θ′ | y)

p(θ | y)

}
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Proposal Density

What makes a good proposal density?

I It is easy to sample from q(θ∗|θ) for any θ

I Easy to compute the acceptance ratio ρ

I Proposals are reasonable distances apart in Θ

I Proposals are not rejected too frequently

Main classes for proposal densities:

I Random Walk: θ∗ = θ(m) + ε
I If the distribution of ε is symmetric about 0, then

q(θ∗ | θ) = q(θ | θ∗)
I Typical choices: ε ∼ N (0,Ω) or ε ∼ U(−δ, δ)

I Independent: q(θ∗ | θ) = q(θ∗)
I
{
θ(m)

}
may display less serial dependence

I Candidate: “easy-to-draw-from” approximation of the posterior
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Other Implementation Details

Burn-in

I Discard first n draws

I Reduces dependence on the (possibly “bad”) initial draw

I Idea: Your initial draws might be in a low probability region
⇒ oversampling of low probability region
⇒ allow time for algorithm to “get to” high probability region

Thinning

I Only retain every dth iteration of the chain

I Reduces dependence between draws
→ BUT! Average on thinned sequence has greater variance
than average over entire sequence

I Possibly useful when computationally-constrained
→ If the chain has very high autocorrelations, you would want
to run the chain for a long time but you might not be able to
store the entire chain (or operations on long chains are costly)
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Example: Normal Linear Regression with Known Variance
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I Model:
yi |β, xi ∼ N (β0 + β1xi , 1)

I Prior: (
β0

β1

)
∼N

((
1
1

)
,

(
10 0
0 5

))
I Proposal:(

β∗0
β∗1

)
=

(
β0

β1

)
+ ε, ε ∼ N

((
0
0

)
,

(
0.01 0

0 0.01

))
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Example: Code (I)
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Example: Code (II)

12 / 22



Example: Posterior Draws
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Gibbs Sampler

Inputs:

I Partition of the parameter vector θ = (θ1, θ2)

I Way to draw from the conditional posteriors p(θ1 | θ2, y) and
p(θ2 | θ1, y)

Algorithm: Start with initial draw θ
(0)
1 . For m = 1, ...,M

1. Draw θ
(m)
2 from p(θ2 | θ(m−1)

1 , y)

2. Draw θ
(m)
1 from p(θ1 | θ(m)

2 , y)

Generalizable to a partition θ = (θ1, ..., θd)
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Example: Normal Regression with Independent N-IG Priors
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I Model:
y = Xβ + ε, ε ∼ N (0, σ2In)

I Priors:

β ∼N (β0,Σ0)

σ2 ∼Inv-Gamma(a0, b0)

We will use the parameterization consistent with Matlab: a0 is
the shape parameter while b0 is the scale parameter.
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Example: Conditional Posteriors
The conditional posteriors are (verifying this is good exercise)

β | σ2, y ∼N (β1,Σ1)

σ2 | β, y ∼Inv-Gamma(a1, b1)

with

Σ1 =

(
Σ−1

0 +
1

σ2
X ′X

)−1

β1 =Σ1

(
Σ−1

0 β0 +

(
1

σ2
X ′X

)
β̂

)
β̂ =(X ′X )−1X ′y

a1 =
N

2
+ a0

b1 =

(
1

b0
+

1

2
(y − Xβ)′(y − Xβ)

)−1

16 / 22



Example: Code (I)

17 / 22



Example: Code (II)
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Posterior Draws
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Gibbs Sampler as a Special Case of Metropolis-Hastings

Define a MH algorithm where for each iteration m = 1, ...,M,
there are d sub-steps. Entire algorithm has Md steps. The jth
sub-step corresponds to an update of the jth partition of the
parameter vector.

The proposal density implied by the Gibbs sampler for the jth
sub-step of the mth iteration (also the (md + j)th step) is

qGibbs
s (θ∗|θ(s−1)) =

{
p(θ∗j |θ

(s−1)
−j , y) if θ∗−j = θ

(s−1)
−j

0 otherwise

where s = md + j .
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Gibbs Sampler as a Special Case of Metropolis-Hastings

Consider a valid proposal – that is, θ∗−j = θ
(s−1)
−j .

Then, the MH acceptance ratio is

p(θ∗ | y)/qGibbs
j ,m (θ∗ | θ(s−1))

p(θ(s−1) | y)/qGibbs
j ,m (θ(s−1) | θ∗)

=
p(θ∗ | y)/p(θ∗j |θ

(s−1)
−j , y)

p(θ(s−1) | y)/p(θ
(s−1)
j | θ∗−j , y)

Note that

p(θ∗|y) = p(θ∗j |θ∗−j , y)p(θ
∗
−j |y) = p(θ∗j |θ

(s−1)
−j , y)p(θ

(s−1)
−j |y)

p(θ(s−1)|y) = p(θ
(s−1)
j |θ(s−1)

−j , y)p(θ
(s−1)
−j |y) = p(θ

(s−1)
j |θ∗−j , y)p(θ

(s−1)
−j |y)

Then,

p(θ∗ | y)/p(θ∗j |θ
(s−1)
−j , y)

p(θ(s−1) | y)/p(θ
(s−1)
j | θ∗−j , y)

=
p(θ

(s−1)
−j | y)

p(θ
(s−1)
−j | y)

= 1

Thus, all proposals are accepted.
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Combining Gibbs Sampler and Metropolis-Hastings

I When the dimension of θ is large, it is often beneficial to work
with a partition of the vector θ = (θ1, ..., θd), as in the Gibbs
sampler

I In some cases, however, sampling from some (or all) of the
conditional distributions p(θj | θ−j , y) may be impossible

I We can construct a specific MH algorithm where we instead
draw from a proposal g(θj | θ−j , y) in cases where we cannot
draw from the conditional distribution. Then, the proposal
density at the mth MH iteration and jth sub-step is

q(θ∗ | θ(md+j−1)) =

{
g(θ∗j | θ

(md+j−1)
−j ) if θ∗−j = θ

(md+j−1)
−j

0 otherwise
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