Markov Chain Monte Carlo Methods

Micole De Vera

CEMFI
1 March 2021

Bayesian Inference

Elements:

- Data: $\left\{y_{i}\right\}_{i=1}^{n}$
- Model/likelihood: $f(y \mid \theta)$
- Prior on parameters: $p(\theta), \theta \in \Theta$

Goal: Integrals involving the posterior $p(\theta \mid y)=\frac{f(y \mid \theta) p(\theta)}{\int_{\Theta} f\left(y \mid \theta^{*}\right) p\left(\theta^{*}\right) d \theta^{*}}$

$$
\mathbb{E}[h(\theta) \mid y]=\int_{\Theta} h(\theta) p(\theta \mid y) \mathrm{d} \theta
$$

This includes posterior means, posterior variances, credible intervals, and the posterior cdf

Problems:

- Obtaining the posterior density is difficult/impossible
- Integrals are too complicated (intractable)

Possible Solution: Simulation (I)

Suppose we can produce iid draws from $p(\theta \mid y):\left\{\theta^{(m)}\right\}_{m=1}^{M}$
An estimator of $\mathbb{E}[h(\theta) \mid y]$ could be

$$
\widehat{h}_{M}=\frac{1}{M} \sum_{m=1}^{M} h\left(\theta^{(m)}\right)
$$

By a LLN,

$$
\widehat{h}_{M} \xrightarrow{p} \mathbb{E}[h(\theta) \mid y]
$$

Possible Solution: Simulation (II)

Maybe we cannot sample iid from the posterior but we can obtain a stationary, ergodic sequence $\left\{\theta^{(m)}\right\}_{m=1}^{M}$ with marginal density $p(\theta \mid y)$

The estimator \widehat{h}_{M} is still valid.
Under stationarity and ergodicity, we have a LLN that tells us

$$
\widehat{h}_{M} \xrightarrow{p} \mathbb{E}[h(\theta) \mid y]
$$

Markov Chains

Definition (Markov Chain) A continuous-state Markov Chain is a sequence $\theta^{(1)}, \theta^{(2)}, \ldots$ that satisfies the Markov property:

$$
\operatorname{Pr}\left(\theta^{(j+1)} \mid \theta^{(j)}, \ldots, \theta^{(1)}\right)=\operatorname{Pr}\left(\theta^{(j+1)} \mid \theta^{(j)}\right)
$$

where $\operatorname{Pr}\left(\theta^{\prime} \mid \theta\right)$ is called the transition kernel and is denoted by $\kappa\left(\theta^{\prime} \mid \theta\right)$. It gives us the marginal density of the next-period draws:

$$
p_{m}\left(\theta^{\prime}\right)=\int_{\Theta} \kappa\left(\theta^{\prime} \mid \theta\right) p_{m-1}(\theta) \mathrm{d} \theta
$$

The stationary distribution of the given transition kernel (if it exists), is such that

$$
p_{S}\left(\theta^{\prime}\right)=\int_{\Theta} \kappa\left(\theta^{\prime} \mid \theta\right) p_{S}(\theta) \mathrm{d} \theta
$$

Markov Chain Monte Carlo (MCMC)

- MCMC is a collection of methods to construct transition kernels $\kappa\left(\theta^{\prime} \mid \theta\right)$ with stationary distribution $p(\theta \mid y)$
- Given an initial value $\theta^{(0)}$ we can generate a sequence $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(M)}$ using the transition kernel $\kappa\left(\theta^{\prime} \mid \theta\right)$.
With $M \rightarrow \infty$,
- Marginal distribution of $\theta^{(M)}$ converges to $p(\theta \mid y)$
- The dependent sample $\left\{\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(M)}\right\}$ will have an empirical distribution that approaches $p(\theta \mid y)$
- Usually, the way we will construct the sequence is such that we can use a LLN

$$
\widehat{h}_{M}=\frac{1}{M} \sum_{m=1}^{M} h\left(\theta^{(m)}\right) \xrightarrow{p} \mathbb{E}[h(\theta) \mid y]
$$

- Two popular methods:
(1) Metropolis-Hastings Algorithm
(2) Gibbs Sampler

Outline

Introduction

Metropolis-Hastings Algorithm
Presentation of Algorithm
Some Details on Implementation
Example

Gibbs Sampler
Presentation of Algorithm
Example
Gibbs Sampler as a Special Case of MH
Combining Ideas

Metropolis-Hastings (MH) Algorithm

Inputs:

- Way to compute the un-normalized posterior

$$
p(\theta \mid y) \propto f(y \mid \theta) p(\theta)
$$

- Proposal density we know how to draw from: $q\left(\theta^{\prime} \mid \theta\right)$

Algorithm: Start with initial draw $\theta^{(0)}$. For $m=1, \ldots, M$

1. Draw θ^{*} from $q\left(\theta \mid \theta^{(m-1)}\right)$ and u from $\mathcal{U}(0,1)$ independently
2. Compute acceptance probability

$$
\rho\left(\theta^{*} \mid \theta^{(m-1)}\right)=\min \left\{1, \frac{f\left(y \mid \theta^{*}\right) p\left(\theta^{*}\right) q\left(\theta^{(m-1)} \mid \theta^{*}\right)}{f\left(y \mid \theta^{(m-1)}\right) p\left(\theta^{(m-1)}\right) q\left(\theta^{*} \mid \theta^{(m-1)}\right)}\right\}
$$

3. New draw

$$
\theta^{(m)}= \begin{cases}\theta^{*} & \text { if } u \leq \rho\left(\theta^{*} \mid \theta^{(m-1)}\right) \\ \theta^{(m-1)} & \text { otherwise }\end{cases}
$$

Why does it work? (Intuition)

Suppose that we are using a symmetric proposal distribution; that is, $q\left(\theta^{*} \mid \theta\right)=q\left(\theta \mid \theta^{*}\right)$. The sequence $\theta^{(1)}, \ldots, \theta^{(M)}$ generated by $\kappa\left(\theta^{\prime} \mid \theta\right)$ should have empirical distribution close to $p(\theta \mid y)$.

- Given $\left(\theta^{\prime}, \theta\right)$, one of the following is true:

$$
p\left(\theta^{\prime} \mid y\right) \geq p(\theta \mid y) \text { or } p\left(\theta^{\prime} \mid y\right)<p(\theta \mid y)
$$

- If $p\left(\theta^{\prime} \mid y\right) \geq p(\theta \mid y)$
- For every θ in the sequence, we should have at least as many θ^{\prime}
- Accept all $\theta \rightarrow \theta^{\prime}$
- If $p\left(\theta^{\prime} \mid y\right)<p(\theta \mid y)$
- For every θ, we should have on average $\frac{p\left(\theta^{\prime} \mid y\right)}{p(\theta \mid y)}$ draws of θ^{\prime}
- Accept $\theta \rightarrow \theta^{\prime}$ with probability $\frac{p\left(\theta^{\prime} \mid y\right)}{p(\theta \mid y)}$
- Given θ, accept proposal θ^{\prime} with probability

$$
\min \left\{1, \frac{p\left(\theta^{\prime} \mid y\right)}{p(\theta \mid y)}\right\}
$$

Proposal Density

What makes a good proposal density?

- It is easy to sample from $q\left(\theta^{*} \mid \theta\right)$ for any θ
- Easy to compute the acceptance ratio ρ
- Proposals are reasonable distances apart in Θ
- Proposals are not rejected too frequently

Main classes for proposal densities:

- Random Walk: $\theta^{*}=\theta^{(m)}+\varepsilon$
- If the distribution of ε is symmetric about 0 , then $q\left(\theta^{*} \mid \theta\right)=q\left(\theta \mid \theta^{*}\right)$
- Typical choices: $\varepsilon \sim \mathcal{N}(0, \Omega)$ or $\varepsilon \sim \mathcal{U}(-\delta, \delta)$
- Independent: $q\left(\theta^{*} \mid \theta\right)=q\left(\theta^{*}\right)$
- $\left\{\theta^{(m)}\right\}$ may display less serial dependence
- Candidate: "easy-to-draw-from" approximation of the posterior

Other Implementation Details

Burn-in

- Discard first n draws
- Reduces dependence on the (possibly "bad") initial draw
- Idea: Your initial draws might be in a low probability region \Rightarrow oversampling of low probability region
\Rightarrow allow time for algorithm to "get to" high probability region

Thinning

- Only retain every d th iteration of the chain
- Reduces dependence between draws
\rightarrow BUT! Average on thinned sequence has greater variance than average over entire sequence
- Possibly useful when computationally-constrained \rightarrow If the chain has very high autocorrelations, you would want to run the chain for a long time but you might not be able to store the entire chain (or operations on long chains are costly)

Example: Normal Linear Regression with Known Variance

- Model:

$$
y_{i} \mid \beta, x_{i} \sim \mathcal{N}\left(\beta_{0}+\beta_{1} x_{i}, 1\right)
$$

- Prior:

$$
\binom{\beta_{0}}{\beta_{1}} \sim \mathcal{N}\left(\binom{1}{1},\left(\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right)\right)
$$

- Proposal:

$$
\binom{\beta_{0}^{*}}{\beta_{1}^{*}}=\binom{\beta_{0}}{\beta_{1}}+\varepsilon, \varepsilon \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{cc}
0.01 & 0 \\
0 & 0.01
\end{array}\right)\right)
$$

Example: Code (I)

```
function val = llikelihood(y, x, params)
    b0 = params(1);
    b1 = params(2);
    % Get predictions
    pred = b0 + b1 * x;
    indiv_like = normpdf(y, pred, 1);
    indiv_ll = log(indiv_like);
    val = sum(indiv_ll);
end
function val = lprior(params)
    b0 = params(1);
    b1 = params(2);
    % Prior on b0;
    b0_prior = normpdf(b0, 1, 10);
    b1_prior = normpdf(b1, 1, 5);
    % Prior
    val = log(b0_prior) + log(b1_prior);
end
function val = unnorm_lpost(y, x, params)
    val = llikelihood(y, x, params) + lprior(params);
end
```


Example: Code (II)

```
% MH Parameters
burn = 5000;
M = 5000;
chain = NaN(2, burn + M);
chain(:, 1) = [1; 1];
accept = NaN(1, burn + M);
for m = 2:(burn + M)
    % Proposal
    proposal = chain(:, m - 1) + mvnrnd([0; 0], [0.01, 0;
                                    0, 0.01[] )';
    % Acceptance probability
    rho = exp(unnorm_lpost(y, x, proposal) - unnorm_lpost(y, x, chain(:, m - 1)));
    rho = min(1, rho);
    % Update
    if rand(1) <= rho
        chain(:, m) = proposal;
        accept(m) = 1;
    else
        chain(:, m) = chain(:, m - 1);
        accept(m) = 0;
    end
end
% Acceptance ratio
mean(accept(:, burn+1:end))
```


Example: Posterior Draws

Outline

Introduction

Metropolis-Hastings Algorithm
Presentation of Algorithm
Some Details on Implementation
Example

Gibbs Sampler
Presentation of Algorithm
Example
Gibbs Sampler as a Special Case of MH
Combining Ideas

Gibbs Sampler

Inputs:

- Partition of the parameter vector $\theta=\left(\theta_{1}, \theta_{2}\right)$
- Way to draw from the conditional posteriors $p\left(\theta_{1} \mid \theta_{2}, y\right)$ and $p\left(\theta_{2} \mid \theta_{1}, y\right)$

Algorithm: Start with initial draw $\theta_{1}^{(0)}$. For $m=1, \ldots, M$

1. Draw $\theta_{2}^{(m)}$ from $p\left(\theta_{2} \mid \theta_{1}^{(m-1)}, y\right)$
2. Draw $\theta_{1}^{(m)}$ from $p\left(\theta_{1} \mid \theta_{2}^{(m)}, y\right)$

Generalizable to a partition $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$

Example: Normal Regression with Independent N-IG Priors

- Model:

$$
y=X \beta+\varepsilon, \varepsilon \sim \mathcal{N}\left(0, \sigma^{2} I_{n}\right)
$$

- Priors:

$$
\begin{aligned}
\beta & \sim \mathcal{N}\left(\beta_{0}, \Sigma_{0}\right) \\
\sigma^{2} & \sim \operatorname{Inv}-\operatorname{Gamma}\left(a_{0}, b_{0}\right)
\end{aligned}
$$

We will use the parameterization consistent with Matlab: a_{0} is the shape parameter while b_{0} is the scale parameter.

Example: Conditional Posteriors

The conditional posteriors are (verifying this is good exercise)

$$
\begin{aligned}
& \beta \mid \sigma^{2}, y \sim \mathcal{N}\left(\beta_{1}, \Sigma_{1}\right) \\
& \sigma^{2} \mid \beta, y \sim \operatorname{Inv-Gamma}\left(a_{1}, b_{1}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
\Sigma_{1} & =\left(\Sigma_{0}^{-1}+\frac{1}{\sigma^{2}} X^{\prime} X\right)^{-1} \\
\beta_{1} & =\Sigma_{1}\left(\Sigma_{0}^{-1} \beta_{0}+\left(\frac{1}{\sigma^{2}} X^{\prime} X\right) \widehat{\beta}\right) \\
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
a_{1} & =\frac{N}{2}+a_{0} \\
b_{1} & =\left(\frac{1}{b_{0}}+\frac{1}{2}(y-X \beta)^{\prime}(y-X \beta)\right)^{-1}
\end{aligned}
$$

Example: Code (I)

```
% Prior hyperparameters
beta0 = [1; 1];
Sigma0 = [2, 0; 0, 2];
a0 = 1;
b0 = 1;
% OLS coefficient
beta_ols = (X' * X) \ X' * y;
```


Example: Code (II)

```
% Gibbs Sampler
burn = 5000;
M = 5000;
chain = NaN(3, burn +M);
chain(1:2, 1) = beta_ols;
for m = 2:(burn + M)
    % Draw sigma_sq conditional on beta
    a1 = (N / 2) + a0;
    b1 = (1 / b0) + 0.5 * (y - X * chain(1:2, m - 1))' * (y - X * chain(1:2, m - 1));
    b1 = 1 / b1;
    chain(3, m)=1/gamrnd(a1, b1);
    % Draw beta conditional on sigma_sq
    Sigma1 = pinv(pinv(Sigma0) + X' * X / chain(3, m));
    beta1 = Sigma1 * (pinv(Sigma0) * beta0 + X' * X * beta_ols / chain(3, m));
    chain(1:2, m) = mvnrnd(beta1, Sigma1)';
end
```


Posterior Draws

Gibbs Sampler as a Special Case of Metropolis-Hastings

Define a MH algorithm where for each iteration $m=1, \ldots, M$, there are d sub-steps. Entire algorithm has Md steps. The j th sub-step corresponds to an update of the j th partition of the parameter vector.

The proposal density implied by the Gibbs sampler for the j th sub-step of the m th iteration (also the $(m d+j)$ th step) is

$$
q_{s}^{\mathrm{Gibbs}}\left(\theta^{*} \mid \theta^{(s-1)}\right)= \begin{cases}p\left(\theta_{j}^{*} \mid \theta_{-j}^{(s-1)}, y\right) & \text { if } \theta_{-j}^{*}=\theta_{-j}^{(s-1)} \\ 0 & \text { otherwise }\end{cases}
$$

where $s=m d+j$.

Gibbs Sampler as a Special Case of Metropolis-Hastings

Consider a valid proposal - that is, $\theta_{-j}^{*}=\theta_{-j}^{(s-1)}$.
Then, the MH acceptance ratio is

$$
\frac{p\left(\theta^{*} \mid y\right) / q_{j, m}^{\text {Gibs }}\left(\theta^{*} \mid \theta^{(s-1)}\right)}{p\left(\theta^{(s-1)} \mid y\right) / q_{j, m}^{\text {ibbs }}\left(\theta^{(s-1)} \mid \theta^{*}\right)}=\frac{p\left(\theta^{*} \mid y\right) / p\left(\theta_{j}^{*} \mid \theta_{-j}^{(s-1)}, y\right)}{p\left(\theta^{(s-1)} \mid y\right) / p\left(\theta_{j}^{(s-1)} \mid \theta_{-j}^{*}, y\right)}
$$

Note that

$$
\begin{gathered}
p\left(\theta^{*} \mid y\right)=p\left(\theta_{j}^{*} \mid \theta_{-j}^{*}, y\right) p\left(\theta_{-j}^{*} \mid y\right)=p\left(\theta_{j}^{*} \mid \theta_{-j}^{(s-1)}, y\right) p\left(\theta_{-j}^{(s-1)} \mid y\right) \\
p\left(\theta^{(s-1)} \mid y\right)=p\left(\theta_{j}^{(s-1)} \mid \theta_{-j}^{(s-1)}, y\right) p\left(\theta_{-j}^{(s-1)} \mid y\right)=p\left(\theta_{j}^{(s-1)} \mid \theta_{-j}^{*}, y\right) p\left(\theta_{-j}^{(s-1)} \mid y\right)
\end{gathered}
$$

Then,

$$
\frac{p\left(\theta^{*} \mid y\right) / p\left(\theta_{j}^{*} \mid \theta_{-j}^{(s-1)}, y\right)}{p\left(\theta^{(s-1)} \mid y\right) / p\left(\theta_{j}^{(s-1)} \mid \theta_{-j}^{*}, y\right)}=\frac{p\left(\theta_{-j}^{(s-1)} \mid y\right)}{p\left(\theta_{-j}^{(s-1)} \mid y\right)}=1
$$

Thus, all proposals are accepted.

Combining Gibbs Sampler and Metropolis-Hastings

- When the dimension of θ is large, it is often beneficial to work with a partition of the vector $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right)$, as in the Gibbs sampler
- In some cases, however, sampling from some (or all) of the conditional distributions $p\left(\theta_{j} \mid \theta_{-j}, y\right)$ may be impossible
- We can construct a specific MH algorithm where we instead draw from a proposal $g\left(\theta_{j} \mid \theta_{-j}, y\right)$ in cases where we cannot draw from the conditional distribution. Then, the proposal density at the m th MH iteration and j th sub-step is

$$
q\left(\theta^{*} \mid \theta^{(m d+j-1)}\right)= \begin{cases}g\left(\theta_{j}^{*} \mid \theta_{-j}^{(m d+j-1)}\right) & \text { if } \theta_{-j}^{*}=\theta_{-j}^{(m d+j-1)} \\ 0 & \text { otherwise }\end{cases}
$$

