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Suppose we want to minimize a function , where  is a  vector and  is assumed to be

twice-continuously differentiable. We are interested in the minimizer .

Let

•
 be the gradient of  which is a  vector with typical element 

•
 be the Hessian of  which is a  matrix with typical element 

Motivation

In econometric applications, we usually think of the function  as an estimation criterion that takes

in a parameter vector . Then  is taken as an estimator of the unknown true parameter . Many
estimators can be framed as minimization problems:

(i) Given a random sample , the OLS estimator for the coefficients of a linear regression

of y on x minimizes the least squares criterion

with gradient and Hessian

(ii) Given a random  sample , the nonlinear least squares (NLS) estimator corresponding to

the nonlinear regression model:

minimizes
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(iii) We have a model for  such that it has density function . We get a random sample  and

we are interested in estimating the unknown parameter . The MLE of the parameter minimizes

with gradient and Hessian

 

Newton-Raphson Algorithm

Consider a second-order Taylor approximation  to the function  around an initial value :

 

A minimizer  of  will satisfy the following necessary first-order conditions with respect to 

or

 .

Note that  happens to be the global minimizer of  when  is a strictly convex function, that

is, if and only if  is positive definite. 

Note that if the function  was quadratic,  would be exact and not an approximation.

Then,  coincides with  as a minimizer of . However, when  is not quadratic but the

quadratic approximation  is a good approximation, then  should be close to . For problems

that minimize sum-of-squares functions (as in ordinary/nonlinear least squares),  is approximately
quadratic when sufficiently close to their minima.

The Newton-Raphson algorithm involves using this quadratic approximation idea to get a sequence of
updates  using

 for 

If the sequence  converges to a limit  it will be such that
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 or 

which since  is invertible implies . This means that  is a critical point of .

If  is positive definite, then  is a local minimizer of .

 

Additional Remarks and Computational Concerns

• In practice, we need some criteria to determine when the updating process should stop. That is, we
need some criteria to decide whether  already provides a sufficiently accurate approximation

to . Popular stopping criteria include: for some chosen tolerance level ,

1. Change in objective function is small: 
2. Gradient is close to zero: 
3. Update in parameters is small: 

• Note that there are no concrete rules as to which of these stopping rules is the best as they depend
on the magnitude of the parameters. They may yield different results if the units of measurement
of variables are changed or if the model is reparametrized. Another recommended stopping rule is

when . The advantage of this stopping rule is that it weights the various
components of the gradient in a manner inversely proportional to the precision with which the
corresponding parameters are estimated.

• Any stopping rule will behave badly if the tolerance level ϵ is not chosen well. If ϵ is too large, then

the algorithm may stop when it is still too far away from . On the other hand, if ϵ is too small, then
the algorithm may continue updating even if we have reached a sufficiently good approximation

to  and any differences result only from rounding errors. In practice, one can experiment different

values of ϵ to see how sensitive results are. If the reported  changes noticeably when ϵ is
reduced, then the initial choice of ϵ may have been too large (or the algorithm is finding it hard to
find a minimum). 

• It is recommended to also stop the updating process if the covergence criterion is not met after a
large number of iterations. When the algorithm terminates in this manner, the convergence is said
to fail.

• Where the algorithm starts, , may determine how well the algorithm performs (or whether it

even converges at all). For functions  that are not globally convex, the algorithm may fail when

we reach an element in the sequence  for which  is not convex around the neighborhood

of . Two pathological cases include:

1. If  is concave at , this causes the update to head off in the wrong direction and you might
end up with a local maximizer instead. Note that the Newton-Raphson algorithm can be interpreted
as finding solutions to the system of equations . The solutions to this system are critical

points of  which may be local minimizers, local maximizers or saddle points.
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2. If  is quite flat at , then the quadratic approximation is very bad for values away from .
It could be the the update might bring you even further away from the minimizer than where you
started and may slow down convergence.

• There are no general and easily verifiable sufficient conditions to guarantee convergence of

the sequence  to the global minimizer of an arbitrary function . One important

exception is when  is a strictly convex function in  then the global convergence result is

guaranteed. A special case of this is when  is quadratic with postive definite Hessian -- then,
convergence to the global minimizer is guaranteed (in fact, after one iteration). Sometimes, there
is a reparametrization ,  invertible, such that the composite function  is
strictly convex in the parameters  (you will see this in one of the computer exercises).

• In general,  may not have only one local minimum. In such cases, the choice of the starting

value  may determine to which local minimum the algorithm converges to. In practice, when

the objective function is suspected not to be globally convex, we try to minimize  several
times, starting at a number of different starting points (ideally quite dispersed over the
interesting regions of the parameter space). If several starting values lead to the same local

minimum  with  less than the value of  observed at any other local minimum, then it is

plausible (but not certain) that  is the global minimizer.
• The Newton-Raphson algorithm converges quickly once it is near a solution but it is

computationally expensive for each iteration. This motivated the development of quasi-Newton
methods that converge somewhat less rapidly but require much less computational cost (and are
often more robust to some of the pathological scenarios like those described above). The idea is
that the savings in work per iteration more than offsets the slower convergence. It often is of the
form involving a parameter  determined at each iteration, and  which is an approximation of
the Hessian (obtained in a number of ways including neglecting some terms in the true Hessian).

The updating equation is given by . For the nonlinear least
squares problem which minimizes a sum-of-squares function, one specific quasi-Newton algorithm
is the Gauss-Newton regressions which happen to be useful in some cases to obtain standard
errors in nonlinear least squares estimation problems. 

Example (Unconstrained Optimization of a Multivariate Function)

We will try to find the minimizer of a popular function used to benchmark numerical optimization
routines: the Rosenbrock function. Consider the following parametrization

Verify that this function has one global minimum at the point .

First, we plot the function to see how it looks like

% Define the function
rosenbrock = @(x,y) (x-1).^2 + 100*(y - x.^2).^2;
 
% Plot the function
x = linspace(-2, 2);
y = linspace(-0.5, 3);
[X, Y] = meshgrid(x, y);
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f = rosenbrock(X, Y);
 
surf(X, Y, f)
shading interp;
axis tight;

The gradient of the function is

% Define gradient
grad_rosenbrock = @(x) [2*(x(1) - 1) - 400 * x(1) * (x(2) - x(1)^2); ...
                        200 * (x(2) - x(1)^2)];

The Hessian of the function is

% Define Hessian
hess_rosenbrock = @(x) [2 - 400 * x(2) + 1200 * x(1)^2, -400 * x(1); ...
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                        -400 * x(1),                    200];                  

We begin with the initial guess of  and run the algorithm until convergence or maximum iterations
of 10, whichever comes first. We will use the convergence criteria that the norm of the gradient is less
than 1e-10.

% Calibration
maxiter = 10;
tol = 1e-10;
 
% Initialize
X_path = [-1;1];
F_path = [rosenbrock(X_path(1, 1), X_path(2, 1))];
iter = 2;
grad_norm = 1;
 
% Newton-Raphson Iterations
while (iter <= maxiter && grad_norm > tol)
    % Newton-Raphson Update
    X_path(:, iter) = X_path(:, iter - 1) - ...
        hess_rosenbrock(X_path(:, iter - 1)) \ grad_rosenbrock(X_path(:, iter - 1));
    F_path(iter) = [rosenbrock(X_path(1, iter), X_path(2, iter))];
    
    % Update stopping criteria
    grad_norm = norm(grad_rosenbrock(X_path(:, iter)));
    
    % Update counter
    iter = iter + 1;
end
 
fprintf("Minimizer found: (%4.2f, %4.2f); Function value: %4.2f; Number of iterations: %i", ...
                X_path(1, end), X_path(2, end), F_path(end), iter - 1);

Minimizer found: (1.00, 1.00); Function value: 0.00; Number of iterations: 3

What if we started with a different initial starting value, say ?

% Initialize
X_path = [0;1];
F_path = [rosenbrock(X_path(1, 1), X_path(2, 1))];
iter = 2;
grad_norm = 1;
 
% Newton-Raphson Iterations
while (iter <= maxiter && grad_norm > tol)
    % Newton-Raphson Update
    X_path(:, iter) = X_path(:, iter - 1) - ...
        hess_rosenbrock(X_path(:, iter - 1)) \ grad_rosenbrock(X_path(:, iter - 1));
    F_path(iter) = [rosenbrock(X_path(1, iter), X_path(2, iter))];
    
    % Update stopping criteria
    grad_norm = norm(grad_rosenbrock(X_path(:, iter)));
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    % Update counter
    iter = iter + 1;
end
 
fprintf("Minimizer found: (%4.2f, %4.2f); Function value: %4.2f; Number of iterations: %i", ...
                X_path(1, end), X_path(2, end), F_path(end), iter - 1);

Minimizer found: (1.00, 1.00); Function value: 0.00; Number of iterations: 6

We still find the global minimizer but in slightly more update steps. In this simple example where
computing the gradient and Hessian is quick, the increased number of update steps may be
inconsequential but in more complex problems, this may be substantial. And in some cases, as we
discussed above, picking some starting values may even lead to non-convergence of the algorithm.

Example (Maximum Likelihood Estimation)

Let Y be distributed student's t with K degrees of freedom. Let  for some unknown scalar θ. 

(i) Let us simulate  random samples of X's for  and . Set sample size to 200.

% Simulation parameters
N = 200;
theta = 0;
K = 3; % degrees of freedom
S = 1000;
 
rng(1234);
 
% Simulate X
p_aux = rand(N, S);
Y = tinv(p_aux, K);
X = Y + theta;

(ii) Given each random sample , we want to get the maximum likelihood estimate  by

Newton-Raphson when K is known (i.e. ). 

The density of X with known degrees of freedom K is proportional to the following

Then, up to a constant term C, the log-likelihood of the sample is

The gradient is
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The Hessian is

% Initialize
theta_init = 0;
maxiter = 50;
tol = 1e-9;
 
% Vector to store estimates
theta_mle = NaN(S, 1);
 
% Newton-Raphson iterations
for s = 1:S
   old_theta = theta_init;
   new_theta = theta_init;
   dist = 1;
   iter = 1;
   
   % Get the sample for this simulation
   x_sam = X(:, s);
   
   while (iter < maxiter && dist > tol)
       % Get new iteration
       % Definitions of gradient and hessian are at the end of the code
       new_theta = old_theta - hessian_t(x_sam, K, old_theta) \ grad_t(x_sam, K, old_theta);
       
       % Update distance
       dist = (new_theta - old_theta)^2;
       
       iter = iter + 1;
       old_theta = new_theta;
   end
   
   theta_mle(s) = new_theta;
end
 
% Plot the distribution of theta_mle
clf;
histogram(theta_mle);
hold on;
ylims = ylim;
plot([theta theta], [ylims(1) ylims(2)]);
title('Sampling Distribution of $\hat{\theta}$', 'interpreter', 'latex');
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function g = grad_t(x, K, theta)
    g = 0;
    
    for i = 1:length(x)
        g = g + (x(i) - theta) / (1 + (x(i) - theta)^2 / K);
    end
    
    g = g * (K + 1) / K;
end
 
function H = hessian_t(x, K, theta)
    H = 0;
    
    for i = 1:length(x)
        H = H + ...
            2 * (x(i) - theta)^2 / K * (1 + (x(i) - theta)^2 / K)^(-2) - ...
            (1 + (x(i) - theta)^2 / K);
    end
    
    H = H * (K + 1) / K;
end
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