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Motivation: Sources of wage inequality

How much of wage inequality can we attribute to...

▶ Worker heterogeneity: human capital, discrimination

▶ Firm heterogeneity: search and matching frictions + labor market power

▶ Sorting: production complementarities

Workhorse model: AKM two-way fixed effects (Abowd et al., 1999)

lnwit = x ′itβ + αi + ψj(i ,t) + εit

with particular quantities of interest:

▶ Variance of firm effects → Var(ψj(i ,t))

▶ Sorting → Cov(αi , ψj(i ,t))

1 / 22



Motivation: Sources of wage inequality

How much of wage inequality can we attribute to...

▶ Worker heterogeneity: human capital, discrimination

▶ Firm heterogeneity: search and matching frictions + labor market power

▶ Sorting: production complementarities

Workhorse model: AKM two-way fixed effects (Abowd et al., 1999)

lnwit = x ′itβ + αi + ψj(i ,t) + εit

with particular quantities of interest:

▶ Variance of firm effects → Var(ψj(i ,t))

▶ Sorting → Cov(αi , ψj(i ,t))

1 / 22



What have we learned?

Lessons from previous work using the two-way FE model:

▶ Sizable role of firm FE (typically explaining 20% of wage variation)

▶ Correlation of firm and worker FE are small indicating little to no sorting

▶ Sorting has been increasing over time

▶ Between-firm wage inequality has been increasing

How reliable are these conclusions?

▶ FE estimators suffer from an incidental parameter bias (“limited mobility bias”)

▶ Variance of firm FE upward biased

▶ Covariance of worker and firm FE downward biased
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Outline

AKM two-way FE model and the limited mobility bias

Random effects approach

Discretized heterogeneity + hybrid FE-RE approach
Digression: Grouped fixed effects (GFE)
Bonhomme, Lamadon, and Manresa (2019)
Related work
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AKM model

lnwit = x ′itβ + αi + ψj(i ,t) + εit

▶ The model is static in two senses:
▶ Firm and worker effects are time-invariant
▶ Wages do not depend on the past → inconsistent with models of on-the-job search

or wage adjustment costs

▶ Worker and firm effects may not map to structural objects (Eeckhout and Kircher,
2011) → thought it remains a useful reduced-form tool

▶ To make progress, we typically assume exogenous mobility:

E(εit | X ,D;α,ψ) = 0

which precludes mobility that depends on match effects, for instance.
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Estimation and identification

AKM least-squares estimator
Under exogenous mobility, the least squares estimator provides us

▶ Consistent estimator for β

▶ (α̂, ψ̂) are unbiased but not fixed-T consistent

▶ Empirical counterparts for variance decomposition: Var(ψ̂j),Cov(α̂i , ψ̂j(i ,t))

Computational implementation not as straightforward (Abowd et al., 1999, 2002;
Guimarães and Portugal, 2010)

Identification of firm effects by movers
The differences in firm effects are identified by movers:

E(Yit+1 − Yit | j(i , t) = j , j(i , t + 1) = j ′) = ψj ′ − ψj

Need a connected set and one normalization
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Limited mobility bias: An illustration
Case I: 1 mover

Yi1 = αi + + εi1
Yi2 = αi + ψj + εi2

▶ Estimator for ψj :

ψ̂j = Yi2 − Yi1 = ψj + (εi2 − εi1)

⇒Var(ψ̂j) = Var(ψj) + 2Var(ε)

▶ Estimator for αi :

α̂i = Yi2 − ψ̂j = (Yi2 − ψj)︸ ︷︷ ︸
=αi+εi2

+εi1 − εi2 = αi + εi1

▶ Estimator for covariance:

Cov(α̂i , ψ̂j) = Cov(αi + εi1, ψj + (εi2 − εi1)) = Cov(αi , ψj)− Var(ε)
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Limited mobility bias: An illustration
Case II: 2 movers

Yi1 = αi + + εi1 Yi ′1 = αi ′ + + εi ′1
Yi2 = αi + ψj + εi2 Yi ′2 = αi ′ + ψj + εi ′2

▶ Estimator for ψj :

ψ̂j =
(Yi2 − Yi1) + (Yi ′2 − Yi ′1)

2
= ψj +

(εi2 − εi1) + (εi ′2 − εi ′1)

2

⇒Var(ψ̂j) = Var(ψj) + Var(ε)

▶ Estimator for αi :

α̂i = Yi2−ψ̂j = (Yi2 − ψj)︸ ︷︷ ︸
=αi+εi2

−(εi2 − εi1) + (εi ′2 − εi ′1)

2
= αi+

(εi1 + εi2) + (εi ′1 − εi ′2)

2

▶ Estimator for covariance:

Cov(α̂i , ψ̂j) = Cov(αi , ψj)−
1

2
Var(ε)

7 / 22



Limited mobility bias: An illustration
Case II: 2 movers

Yi1 = αi + + εi1 Yi ′1 = αi ′ + + εi ′1
Yi2 = αi + ψj + εi2 Yi ′2 = αi ′ + ψj + εi ′2

▶ Estimator for ψj :

ψ̂j =
(Yi2 − Yi1) + (Yi ′2 − Yi ′1)

2
= ψj +

(εi2 − εi1) + (εi ′2 − εi ′1)

2

⇒Var(ψ̂j) = Var(ψj) + Var(ε)

▶ Estimator for αi :

α̂i = Yi2−ψ̂j = (Yi2 − ψj)︸ ︷︷ ︸
=αi+εi2

−(εi2 − εi1) + (εi ′2 − εi ′1)

2
= αi+

(εi1 + εi2) + (εi ′1 − εi ′2)

2

▶ Estimator for covariance:

Cov(α̂i , ψ̂j) = Cov(αi , ψj)−
1

2
Var(ε)

7 / 22



Limited mobility bias: An illustration
Case II: 2 movers

Yi1 = αi + + εi1 Yi ′1 = αi ′ + + εi ′1
Yi2 = αi + ψj + εi2 Yi ′2 = αi ′ + ψj + εi ′2

▶ Estimator for ψj :

ψ̂j =
(Yi2 − Yi1) + (Yi ′2 − Yi ′1)

2
= ψj +

(εi2 − εi1) + (εi ′2 − εi ′1)

2

⇒Var(ψ̂j) = Var(ψj) + Var(ε)

▶ Estimator for αi :

α̂i = Yi2−ψ̂j = (Yi2 − ψj)︸ ︷︷ ︸
=αi+εi2

−(εi2 − εi1) + (εi ′2 − εi ′1)

2
= αi+

(εi1 + εi2) + (εi ′1 − εi ′2)

2

▶ Estimator for covariance:

Cov(α̂i , ψ̂j) = Cov(αi , ψj)−
1

2
Var(ε)

7 / 22



Limited mobility bias: An illustration
Comparison

Variance component 1 mover 2 movers

Var(ψ̂j) Var(ψj) + 2Var(ε) Var(ψj) + Var(ε)

Cov(α̂i , ψ̂j) Cov(αi , ψj)− Var(ε) Cov(αi , ψj)− 1
2Var(ε)

▶ The contribution of firm effect on the variance of wages biased upward

▶ Sorting (covariance) of worker and firm effects biased downward (may even
reverse sign)

▶ Size of bias depends on number of movers
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Bias-correction of variance components

▶ Andrews et al. (2008) provides a characterization of the bias in the variance
components based on the AKM estimators and an bias-correction under
homoskedasticity

▶ Kline et al. (2020) propose a jack-knife based bias-correction under
heteroskedasticity

▶ For large networks, the exact bias-correction estimators are computationally
infeasible as they involve inverting large matrices → computationally-feasible
approximations proposed
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Bias-corrected estimates across countries
Bonhomme et al. (2023)
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Outline

AKM two-way FE model and the limited mobility bias

Random effects approach

Discretized heterogeneity + hybrid FE-RE approach



Random effect approaches

▶ Fixed effects approaches are attractive because we can be agnostic about the
unobserved heterogeneity → α’s and ψ’s left unrestricted

▶ Random effects approaches require us to model the unobserved heterogeneity
▶ Augment with a model of the joint distribution of (α,ψ) | D
▶ Made to depend on a smaller number of parameters → computational tractability

and more precise estimates
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RE specification by Woodcock (2008)



α1
...
αN

ψ1
...
ψJ


| D ∼ N





0
...
0
0
...
0


,



σ2α . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . σ2α 0 . . . 0
0 . . . 0 σ2ψ . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . σ2ψ




Assumptions quite strong:

▶ No sorting

▶ Cannot capture “workers working in same firm are similar” or “firms that employ
the same workers are similar”

▶ Woodcock (2008) provide a specification with match effects that may relax some
of the economic assumptions
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“Restricted ML” estimator by Woodcock (2008)

Take MLE (α̃, ψ̃, σ̃2α, σ̃
2
ψ, σ̃

2
ε) corresponding to the likelihood

log f (Y , α, ψ | D) = log f (Y | D, α, ψ) + log f (α,ψ | D)

=− 1

2
log σ2ε −

1

2σ2ε
(Y − Dγ)′(Y − Dγ)

− 1

2
log | Σ(σ2

α,σ
2
ψ)

| −1

2
(α′, ψ′)Σ−1

(σ2
α,σ

2
ψ)
(α′, ψ′)′

▶ (α̃, ψ̃) can be shown to be posterior mean estimates of (α,ψ) viewing our
specified model of (α,ψ) | D as a prior (Abowd et al., 2008)

▶ (α̃, ψ̃) can be seen as “shrinkage” estimates (shrinking towards a model with
fully-random matching)

▶ Consistency still relies on correct specification
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Related work

▶ Random effects approach may open some possibilities:
▶ Dynamics in firm and worker effects
▶ Complex Markovian structures: persistent-transitory components

▶ Related papers: Friedrich et al. (2021); Bingley and Cappellari (2022)
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Grouped fixed effects

▶ In practice, we face a trade-off between
▶ Modeling unobserved heterogeneity flexibly
▶ Keeping parsimonious specifications for the observed data

▶ Models with discretized heterogeneity is an attempt to resolve the tradeoff

▶ Especially in nonlinear models, GFE may alleviate incidental parameter biases

▶ Example: time-varying group effects + group-specific coefficients

yit = x ′itθgi + αgi ,t + εit

with group membership variables gi ∈ {1, ...,G}
▶ In environments where unobserved heterogeneity may be continuous, GFE can be

thought of as regularization or dimension reduction (Bonhomme et al., 2021)
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GFE estimation
Iterative as in Bonhomme and Manresa (2015)

(θ̂, α̂, γ̂) = argmin
θ,α,γ

N∑
i=1

T∑
t=1

(yit − x ′itθgi − αgi ,t)
2

We can solve this using an iterative algorithm. Start with initial guess (θ(0), α(0))

1. Assignment. For i = 1, ...,N

g
(s+1)
i = argmin

g∈{1,...,G}

T∑
t=1

(yit − x ′itθ
(s)
g − α

(s)
g ,t)

2

2. Update.

(θ(s+1), α(s+1)) = argmin
θ,α

N∑
i=1

T∑
t=1

(
yit − x ′itθg (s+1)

i

− α
g
(s+1)
i ,t

)2

3. Iterate between Steps 1 and 2 until numerical convergence

Other algorithms can be considered to improve speed and accuracy
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GFE estimation
Two-step as in Bonhomme et al. (2021)

▶ In some models, the updating step is computationally costly

▶ We might have access to moments of the data, hi , that are informative of the
underlying unobserved heterogeneity → two-step estimation

▶ Example: yit = αgi + εit then y i informative of αgi

▶ Step 1 (Classification). Fix G . Start with initial guess of means h̃
(0)
1 , ..., h̃

(0)
G

1. Assignment. For i = 1, ...,N

g
(s+1)
i = argmin

g=1,...,G
∥hi − h̃(s)g ∥2

2. Update.

h̃(s+1)
g =

1

#{i : g (s+1)
i = g}

∑
{i :g (s+1)

i =g}

hi

▶ Step 2. Estimate parameters of model conditional on groups from Step 1
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Model set-up
Static model of Bonhomme et al. (2019)

▶ Worker types: ℓ(i) ∈ {1, ..., L}
▶ Firm classes: k(j) ∈ {1, ...,K}
▶ Treat firm classes as FE and worker types as RE

▶ Restrictions:

f (Y1,Y2, k
′ | k) =

L∑
ℓ=1

f (Y2 | Y1, k , k
′, ℓ)× f (k ′ | Y1, k , ℓ)× f (Y1 | k , ℓ)× f (ℓ | k)

=
L∑
ℓ=1

f (Y2 | k ′, ℓ)× f (k ′ | k , ℓ)× f (Y1 | k , ℓ)× f (ℓ | k)

▶ Two-stage estimation:

1. Recover firm classes
2. Estimate parameters conditional on estimated firm classes by ML
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Recovering firm classes

▶ Note that the wage distribution of a firm in period 1 is

Pr(Y1 ≤ y | j) =
L∑
ℓ=1

Pr(Y1 ≤ y | k(j), ℓ)× Pr(ℓ | k(j))

which only depends on the firm’s class k(j)

▶ This motivates that we may recover firm classes by clustering based on the firm’s
wage distribution

min
k(1),...,k(J),H1,...,HK

J∑
j=1

nj

D∑
d=1

(
F̂j(yd)− Hk(j)(yd)

)2

i.e., k-means clustering on D CDF points
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Identifying complementarities in wages

▶ To gain some intuition, consider the following model of wages

Yit(kit) = a(kit) + b(kit)× α(ℓi ) + εit

▶ Consider movers from two firm classes:

y2→1(2)− y1→2(2) = b(2)(α2→1 − α1→2)

y2→1(1)− y1→2(1) = b(1)(α2→1 − α1→2)

then the ratio identifies b(2)
b(1)

▶ Identification is based on movers between firm classes
▶ We need movers in both directions (cycles) → by every worker type
▶ We need differential mobility (α2→1 ̸= α1→2)
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What can we learn from mean restrictions?
▶ Note that

(y2→1(2)− y2→1(1)) + (y1→2(1)− y1→2(2)) = (b(2)− b(1))(α2→1 − α1→2)

which is zero if b(2)− b(1) = 0 or α2→1 = α1→2

▶ Looking at wage changes between 1 → 2 and 2 → 1 is not necessarily a test of
linearity

21 / 22



Outline

AKM two-way FE model and the limited mobility bias

Random effects approach

Discretized heterogeneity + hybrid FE-RE approach
Digression: Grouped fixed effects (GFE)
Bonhomme, Lamadon, and Manresa (2019)
Related work



Related work

▶ Abowd et al. (2019) models match effects and mobility to quantify biases induced
by endogenous mobility

▶ Lentz et al. (forthcoming)
▶ Augments the model with a structural matching model (with unemployment) to

study how job preferences, layoffs, market segmentation, and reemployment affect
mobility and sorting

▶ Nest the EM with a classification step (iterative algorithm classification + parameter
updating)
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