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1 Introduction

Sometimes, we want to compute a definite integral that might not have closed form. There

are two applications (somewhat related) in econometrics of particular interest:

1. We might be interested in computing a particular expectation. For example, consider

a random variable X whose distribution can be described by pdf ϕ. We are interested

in the expected value of some function f(X). The expectation is an integral

E[g(X)] =

∫
Ω
f(x)ϕ(x) dx.

2. We might be interested in maximum likelihood estimation of a model with latent vari-

ables that requires us to compute the integrated likelihood. That is,

θ̂ = argmax
θ

∫
Ω
p(x | η; θ)p(η | θ) dη.

This is key to estimating random coefficient logit models, as in Berry et al. (1995), for

instance.

In this note, I discuss deterministic and stochastic integration rules that may be useful in

computational (approximate) evaluation of integrals, as in the above situations.

2 Deterministic integration rule: Gaussian quadrature

To introduce Gaussian quadrature, we first discuss another deterministic integration rule: the

trapezoidal rule with an equi-spaced grid. Consider the problem of evaluating the following

integral ∫ b

a
f(x) dx.
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The domain [a, b] is partitioned into n subintervals of equal length so that the length of each

subinterval is h = (b− a)/n. The corresponding partition points are therefore xi = a+ ih for

i = 0, ..., n. The approximation to the integral is then given by

∫ b

a
f(x) dx ≈

n−1∑
i=0

h

2
(f(xi) + f(xi+1)) .

The idea behind this is that the function f is approximated by linear interpolating splines

on the grid x0, ..., xn.
1 The area within each subinterval, then, corresponds to an area of a

trapezoid where the bases are f(xi) and f(xi+1) with height h.

In general, the integration rule can be written as∫ b

a
f(x) dx ≈

n∑
i=0

ωif(xi),

that is, as a weighted sum of function values on a grid. Integration rules that can be written

as a weighted sum, such as the one above, are called quadratures.

In the trapezoidal rule discussed above, there are two “user-specified” objects: (i) the

choice of interpolating polynomial, and (ii) the number of subintervals. The choice of the

number of subintervals n fixes the subinterval length and grid (which corresponds to where we

will evaluate the function). The choice of interpolating polynomial, along with the grid points,

determine the weights. In general, increasing n increases the precision of the integration rule.

Can we do better by choosing the weights and grid points jointly? Intuitively, this effec-

tively increases our degrees of freedom. By taking advantage of these additional degrees of

freedom, we are able to improve on the trapezoidal rule along some dimensions.

Gaussian quadrature. One way to select the weights and grid points is the so-called

Gaussian quadrature. We select the weights and grid points such that, for some fixed n,∫ b

a
f(x) dx = ω0f(x0) + ω1f(x1) + ...+ ωnf(xn),

for all polynomials f of order m (made as large as possible). That is, the weights and grid

are chosen such that the rule is exact for polynomials up to order m. While we are still

fixing the number of grid points, unlike the trapezoidal rule, we are not imposing that they

be equidistant points in the domain.

For such a rule to be exact for any arbitrary polynomial of order m, it is sufficient to

show that the rule is exact for the corresponding basis functions {1, x, ..., xm−1, xm}. This

1We can create an alternative integration rule by approximating the function f with higher-order polynomial
spline interpolation. This class of rules is more generally known as the “Newton-Cotes formulas”.
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provides m+ 1 restrictions for 2(n+ 1) unknown weights and grid points. Thus, for a fixed

n, the rule would be exact for polynomials up to 2n+ 1.

Let us consider a concrete example. We will find the Gaussian quadrature with n = 1 on

the domain [−1, 1] so that our integration rule will be∫ 1

−1
f(x) dx ≈ ω0f(x0) + ω1f(x1).

With n = 1, our quadrature will be exact for polynomials up to order 3 which implies the

following restrictions:

f(x) = 1 :
∫ 1
−1 1 dx = 2 = ω0 + ω1

f(x) = x :
∫ 1
−1 x dx = 0 = ω0x0 + ω1x1

f(x) = x2 :
∫ 1
−1 x

2 dx = 2
3 = ω0x

2
0 + ω1x

2
1

f(x) = x3 :
∫ 1
−1 x

3 dx = 0 = ω0x
3
0 + ω1x

3
1

From the second restriction, we know ω0x0 = −ω1x1. From the fourth, we know ω0x
3
0 =

−ω1x
3
1. Therefore, x20 = x21. Thus, x0 = −x1, ignoring the degenerate solution where

x0 = x1. Going back to the second, we find ω0 = ω1. From the first restriction, ω0 = ω1 = 1.

From the third restriction, x0 = −1/
√
3 and x1 = 1/

√
3. The resulting integration rule is

therefore ∫ 1

−1
f(x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
.

The corresponding quadratures with more points could be obtained similarly.

A change of variable allows us to generalize the quadrature on [−1, 1] to definite integrals

over the arbitrary domain [a, b]. Consider a quadrature rule for the domain [−1, 1] with grid

{x0, x1, ..., xn} and corresponding weights {ω0, ..., ωn}. Then,∫ b

a
f(u) du =

∫ 1

−1
f

(
b− a

2
x+

a+ b

2

)
b− a

2
dx

=
b− a

2

∫ 1

−1
f

(
b− a

2
x+

a+ b

2

)
dx

≈ b− a

2

n∑
i=0

ωif

(
b− a

2
xi +

a+ b

2

)
.

Other Gaussian quadrature rules. The quadrature rules generated in the way above

perform best when the integrand is close to a polynomial or can be approximated closely by

a series of polynomials.2 We can generalize the quadrature rules to deal with integrals of the

2Gaussian quadrature is consistent for Riemann integrable functions in which case we can get the approx-
imation arbitrarily precise by increasing the number of grid points.
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form ∫
D
w(x)f(x) dx,

where w(x) is a weight function. The rules will still be exact for polynomials f up to certain

order. Thus, the integrand need not be well-approximated as a polynomial directly, but is

close to a polynomial after dividing by w(x). In the case above, w(x) = 1. However, we may

also have rules corresponding to w(x) = exp(−x) or w(x) = exp(−x2) which may be useful

in computing integrals relating to the exponential or normal distributions, respectively. The

resulting quadrature rules are such that∫
D
w(x)f(x) dx ≈

n∑
i=0

ωif(xi).

Table 1: Gaussian Quadrature Rules

Domain, D Weighting function, w(x) Orthogonal polynomials

[−1, 1] 1 Legendre
[0,∞) exp(−x) Laguerre

(−∞,∞) exp(−x2) Hermite

Orthogonal polynomials. It can be shown that the grid points for a Gaussian quadrature

of order n is given by the roots of the orthogonal polynomial pn(x) corresponding to the inner

product with weights w(x), i.e.,

⟨f, g⟩w =

∫
D
w(x)f(x)g(x) dx.

For w(x) = 1 on the domain [−1, 1], the relevant orthogonal polynomials are the Legendre

polynomials. Thus, the above quadrature is also sometimes recognized as the Gauss-Legendre

quadrature. For w(x) = exp(−x2) on the domain (−∞,∞), we have the Gauss-Hermite

quadrature corresponding to roots of the Hermite polynomials. Once the roots are known,

then the weights can be obtained by solving a linear system just as above (the restrictions

are linear in the weights).

Application: Expectations related to the normal distribution. Consider a random

variable X ∼ N (µ, σ2). Suppose that we are interested in computing the following expecta-

tion

E[f(X)] =

∫ ∞

−∞

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
f(x) dx.
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Consider the change of variable u = (x− µ)/
√
2σ2. Then,

E[f(X)] =

∫ ∞

−∞

1√
π
exp(−u2)f(µ+

√
2σ2u) dx ≈ 1√

π

n∑
i=0

ωif(µ+
√
2σ2xi),

where {x0, ..., xn} and {ω0, ..., ωn} are the grid points and weights corresponding to a Gauss-

Hermite quadrature rule.

Extension to multiple integrals. The quadratures we have thus far considered are for

unidimensional definite integrals. How do we construct quadratures that work for integrals

over multiple variables? To illustrate possible solutions, let us consider again the problem of

finding expectations but now of a function of two random variables, say,∫∫
f(x, y)ϕ(x, y) dx dy,

where ϕ(x, y) is the appropriate pdf.

It is intuitive that a quadrature rule that takes a tensor product of unidimensional quadra-

ture rules may work. To illustrate, in the two-dimensional case,∫∫
f(x, y)ϕ(x, y) dx dy =

∫∫
f(x, y)ϕ(x)ϕ(y | x) dx dy (by def of conditional expectations)

=

∫ ∫
f(x, y)ϕ(x) dx︸ ︷︷ ︸ ϕ(y | x) dy

≈
∫ [

n∑
i=0

ωif(xi, y)ϕ(xi)

]
ϕ(y | xi) dy (quadrature for inner integral)

≈
n∑

j=0

ωj

n∑
i=0

ωif(xi, yj)ϕ(xi)ϕ(yj | xi) (quadrature for outer integral)

=

n∑
j=0

n∑
i=0

ωiωjf(xi, yj)ϕ(xi)ϕ(yj | xi),

which shows that it is similar to using a quadrature where the grid points are the Cartesian

product of the individual unidimensional grid points with corresponding weights that are

multiplied. This also requires us to be able to write down clearly the conditional distribution

of one variable conditional on the other.

Note that the number of function evaluations increase exponentially with the number of

dimensions. If we start with individual n-point unidimensional quadratures which require n

function evaluations each, then using that in a 2-dimensional integration will require n2 func-

tion evaluations. However, some of these function evaluations will have very small effective

contributions to the overall approximation, especially if the effective weights (ωiωj) are small.
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As such, one can do pruning which involves dropping grid points where the effective weights

are smaller than some chosen threshold. In cases where the function is computationally costly

to evaluate or when one needs to repeatedly do variations of the same integration multiple

times, this may save substantial computing time. Jäckel (2005) provides a discussion of other

considerations in the context of multivariate Gauss-Hermite quadrature.

3 Stochastic integration rules: Monte Carlo integration

In the specific examples I mentioned in the introduction, there are natural stochastic rules

that give us approximations of the integrals. In particular, Monte Carlo Integration. To

illustrate, suppose we are interested in the expectation example above. For some large N ,

we can draw (x1, ...., xN ) ∼ ϕ then

Ê[f(X)] =
1

N

N∑
i=1

f(xi).

This method of taking expectations is underpinned by some law of large numbers. It is

important to note that this method can easily be extended into multiple dimensions by

drawing samples from multivariate distributions.

Generic integrals. The same idea can be used to get approximations for integrals that

are not necessarily expectations. Consider the integral∫ 1

0
f(x) dx

over the interval [0, 1]. This integral can be interpreted as an expectation of the function

f(X) where X is uniformly distributed on [0, 1]. Then, we can draw independent draws

{xi}Ni=1 from U [0, 1] and ∫ 1

0
f(x) dx ≈ 1

N

N∑
i=1

f(xi).

The extension to multidimensional integrals and integrals with arbitrary bounds is straight-

forward.

As mentioned, a LLN would assure that as N → ∞, the average converges to the integral

of interest. A central limit theorem tells us something about the large sample distribution of

the approximation of the integral. Regardless of the number of dimensions of the integral, the

error of the integral will be of the order N−1/2 proportional to the variance of the integrand.

Intuitively, there are then two natural ways to decrease the variance of the approximation:

(1) increase the number of samples drawn N , or (2) make the integrand smoother.
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Variance reduction: Importance sampling. We start with the following insight:∫
f(x) dx =

∫
f(x)

p(x)
p(x) dx.

That is, the expectation of f(X) with X distributed uniform is the same as the expectation

of f(x)
p(x) where X is distributed with pdf p. Then,

∫
f(x) dx ≈ 1

N

N∑
i=1

f(x)

p(x)
,

where (x1, ..., xN ) are independent draws from a distribution with pdf p. The performance

of this approximation depends on how f(x)
p(x) looks like. We choose p to be such that (i) it is a

distribution we can draw from, and (ii) f(x)
p(x) is close to constant.

Variance reduction: Control variates. Consider a function h(x) such that the integral∫
h(x)p(x) dx = µ

is known. Then, ∫
f(x)p(x) dx =

∫
[f(x) + α(h(x)− µ)] p(x) dx,

for any arbitrary constant α. Moreover, for a random sample {x1, ..., xN} ∼ p,

∫
f(x)p(x) dx ≈ 1

N

N∑
i=1

[f(xi) + α(h(xi)− µ)]

is a consistent estimator of the integral. The variance of this estimator is proportional to

Var(f(xi) + α(h(xi)− µ)) = Var(f(xi)) + α2Var(h(xi)) + 2αCov(f(xi), h(xi)),

so it may be possible to get lower variance if f(x) and h(x) are correlated and we choose α

strategically. The α that minimizes this variance is

α = −Cov(f(xi), h(xi))

Var(h(xi))

so the resulting variance is Var(f(xi))(1− ρ2) where ρ = Corr(f(xi), h(xi)).

We note, however, that the estimator with the optimal α is not feasible. In practice, we
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consider the feasible estimator∫
f(x)p(x) dx ≈ 1

N

N∑
i=1

[f(xi) + α̂(h(xi)− µ)] ,

where α̂ is an estimate of α obtained from replacing Cov(f(xi), h(xi)) and Var(h(xi)) by their

finite sample analogs.

Variance reduction: Antithetic variates. This method of variance reduction is based

on the idea that an average over a random sample is less efficient than an average over a

sample with negative correlation (but correct marginal distribution). For simplicity, consider

even N and consider two samples {x1, ..., xN/2} ∼ p and {y1, ..., yN/2} ∼ p. Then,

∫
f(x)p(x) dx ≈ 1

N

N/2∑
i=1

[h(xi) + h(yi)]

will be more efficient than an estimator based on a random sample of size N if h(xi) and

h(yi) are negatively correlated.

The correlation of h(xi) and h(yi) depends on the correlation of xi and yi, and the shape

of h. It is not easy, in general, to obtain a strategy to draw (xi, yi) with the right correlation

and correct marginals (pdf p) so that h(xi) and h(yi) are negatively correlated. A case where

we can generate a generic rule is the following: consider uniform draws {u1, ..., uN/2}. Then
{1− u1, ..., 1− uN/2} is also distributed uniformly on [0, 1]. Moreover, if f is monotone, then

f(ui) and f(1− ui) are negatively correlated (Rubinstein, 1981). Then,

∫ 1

0
f(x) dx ≈ 1

N

N/2∑
i=1

[f(ui) + f(1− ui)] .

This can be made slightly more general to take expectations with general distributions. In

particular, we take advantage of the inverse transform methods of drawing random samples.

Let F be the cdf corresponding to the density p. Then {F−1(u1), ..., F
−1(uN/2)} and {F−1(1−

u1), ..., F
−1(1− uN/2)} are distributed according to F . Consider the estimator

∫
h(x)p(x) dx ≈ 1

N

N/2∑
i=1

[
h(F−1(ui)) + h(F−1(1− ui))

]
.

Since F is monotone, then so is F−1. As such, if h is monotone, h(F−1(ui)) and h(F−1(1−ui))

are negatively correlated and we obtain efficiency gains.
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Variance reduction: Quasi Monte Carlo. Another way to get more “efficient” Monte

Carlo integral approximations is to change the way draws are “sampled”. The assurances we

have from randomly drawing from a PDF is about the expected densities after an arbitrary

large number of drawns. In actuality, draws may tend to be clumped. This clumping tends

to be wasteful because points close together do not give much additional information about

the function we are integrating. We go back to the ideas in Gaussian quadrature: can we

do better with a predetermined set of evaluation points (that mimic a random draw in some

sense)?

The answer is given by the theory of discrepancies. We want to somehow measure how

good a set of points represents the uniform distribution. One of the discrepancies we can use

is the so-called star discrepancy. More precisely, the star discrepancy between a set of points

{x1, ..., xN} and the uniform distribution is

D∗
N = sup

B∈B

∣∣∣∣∣
N∑
i=1

1(xi ∈ B)

N
− µ(B)

∣∣∣∣∣ ,
where B is the set of anchored boxed, that is, a box with vertices in the origin and x ∈ [0, 1]d.

And µ(B) is the Lebesgue measure of the set B which in this case is just the volume of B.

This also corresponds to the Kullback-Leibler divergence. It can be shown that there are

deterministic {xi} that have lower discrepancy than a random uniform draw. Moreover, the

Koksma-Hlawka inequality tells us that the precision or the error of an integral approximation

using a set of points is bounded above by the product of the discrepancy of the sequence and

a measure of smoothness of the function (Hardy-Krause total variation). Unfortunately, the

improved accuracy of QMC methods are lost in settings with high dimensions or when the

integrand is not smooth (Morokoff and Caflisch, 1995).

How do we construct such “low-discrepancy” sequences? A class of generators is called

“digital nets”. The simplest is the radical inverse sequence or the so-called van der Corput

sequence, defined in one-dimension. Let b ≥ 2 be an integer base. Then any non-negative

integer n can be written in this base such that n =
∑∞

k=1 nkb
k−1 for nk ∈ {0, 1, ..., b− 1}. If

b = 2 then this is just the binary representation of non-negative integers. The corresponding

inverse radical function in base b is then ϕb(n) =
∑∞

k=1 nkb
−k which lies in [0, 1). To illustrate:

since 13 = 11012, then

ϕ2(13) = 1× 1

2
+ 0× 1

22
+ 1× 1

23
+ 1× 1

24
=

11

16
.

Then, a sequence {x1, ..., xN} can be obtained from the radical inverse transformation on the

sequence {1, ..., N}. This can be extended to multiple dimensions where we choose a different

prime integer base for each dimension. This extension is the so-called Halton Sequence. In
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general, sequences generated this way have star discrepancy D∗
N = O((log n)d/n).3 The so-

called Sobol and Faure sequences are alternative extensions of this idea in multiple dimensions.

Since the sequences are deterministic, though we can get assurances on precision for a

fixed sequence, we cannot get finite sample error estimates. One way to “randomize” the

QMC is by rotating the sequences. For a random U drawn from a uniform distribution on

[0, 1]d, we can get the “rotated” sequence

x′i = xi + U (mod 1),

where the addition and remainder operations are taken componentwise. With a number of

these sequences, we may obtain different integral estimates I1, ..., IM . We can also get a

combined estimate Î = 1
M

∑M
m=1 Im and this may be more precise for certain f .

3For large d, the (logn)d term may dominate and therefore the performance of QMC may deteriorate in
high dimensions.
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